This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 744

2023 Moldova EGMO TST, 5

Find all pairs of real numbers $(x, y)$, that satisfy the system of equations: $$\left\{\begin{matrix} 6(1-x)^2=\dfrac{1}{y} \\ \\6(1-y)^2=\dfrac{1}{x}.\end{matrix}\right.$$

2002 IMO Shortlist, 5

Let $n$ be a positive integer that is not a perfect cube. Define real numbers $a,b,c$ by \[a=\root3\of n\kern1.5pt,\qquad b={1\over a-[a]}\kern1pt,\qquad c={1\over b-[b]}\kern1.5pt,\] where $[x]$ denotes the integer part of $x$. Prove that there are infinitely many such integers $n$ with the property that there exist integers $r,s,t$, not all zero, such that $ra+sb+tc=0$.

1996 Israel National Olympiad, 7

Find all positive integers $a,b,c$ such that $$\begin{cases} a^2 = 4(b+c) \\ a^3 -2b^3 -4c^3 =\frac12 abc \end {cases}$$

1986 Swedish Mathematical Competition, 4

Prove that $x = y = z = 1$ is the only positive solution of the system \[\left\{ \begin{array}{l} x+y^2 +z^3 = 3\\ y+z^2 +x^3 = 3\\ z+x^2 +y^3 = 3\\ \end{array} \right. \]

2010 Greece JBMO TST, 2

Find all real $x,y,z$ such that $\frac{x-2y}{y}+\frac{2y-4}{x}+\frac{4}{xy}=0$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$.

2005 Irish Math Olympiad, 2

Let $ D,E$ and $ F$ be points on the sides $ BC,CA$ and $ AB$ respectively of a triangle $ ABC$, distinct from the vertices, such that $ AD,BE$ and $ CF$ meet at a point $ G$. Prove that if the angles $ AGE,CGD,BGF$ have equal area, then $ G$ is the centroid of $ \triangle ABC$.

2000 Austrian-Polish Competition, 3

For each integer $n \ge 3$ solve in real numbers the system of equations: $$\begin{cases} x_1^3 = x_2 + x_3 + 1 \\...\\x_{n-1}^3 = x_n+ x_1 + 1\\x_{n}^3 = x_1+ x_2 + 1 \end{cases}$$

2016 Abels Math Contest (Norwegian MO) Final, 2a

Find all positive integers $a, b, c, d$ with $a \le b$ and $c \le d$ such that $\begin{cases} a + b = cd \\ c + d = ab \end{cases}$ .

1967 IMO Longlists, 24

In a sports meeting a total of $m$ medals were awarded over $n$ days. On the first day one medal and $\frac{1}{7}$ of the remaining medals were awarded. On the second day two medals and $\frac{1}{7}$ of the remaining medals were awarded, and so on. On the last day, the remaining $n$ medals were awarded. How many medals did the meeting last, and what was the total number of medals ?

2011 Romanian Master of Mathematics, 2

Determine all positive integers $n$ for which there exists a polynomial $f(x)$ with real coefficients, with the following properties: (1) for each integer $k$, the number $f(k)$ is an integer if and only if $k$ is not divisible by $n$; (2) the degree of $f$ is less than $n$. [i](Hungary) Géza Kós[/i]

2010 Baltic Way, 1

Find all quadruples of real numbers $(a,b,c,d)$ satisfying the system of equations \[\begin{cases}(b+c+d)^{2010}=3a\\ (a+c+d)^{2010}=3b\\ (a+b+d)^{2010}=3c\\ (a+b+c)^{2010}=3d\end{cases}\]

2004 Estonia National Olympiad, 5

Real numbers $a, b$ and $c$ satisfy $$\begin{cases} a^2 + b^2 + c^2 = 1 \\ a^3 + b^3 + c^3 = 1. \end{cases}$$ Find $a + b + c$.

2009 All-Russian Olympiad Regional Round, 10.7

Positive numbers $ x_1, x_2, . . ., x_{2009}$ satisfy the equalities $$x^2_1 - x_1x_2 +x^2_2 =x^2_2 -x_2x_3+x^2_3=x^2_3 -x_3x_4+x^2_4= ...= x^2_{2008}- x_{2008}x_{2009}+x^2_{2009}= x^2_{2009}-x_{2009}x_1+x^2_1$$. Prove that the numbers $ x_1, x_2, . . ., x_{2009}$ are equal.

1949-56 Chisinau City MO, 56

Solve the system of equations $$\begin{cases} \dfrac{x+y}{xy}+\dfrac{xy}{x+y}= a+ \dfrac{1}{a}\\ \\\dfrac{x-y}{xy}+\dfrac{xy}{x-y}= c+ \dfrac{1}{c}\end{cases}$$

2013 Dutch IMO TST, 1

Determine all 4-tuples ($a, b,c, d$) of real numbers satisfying the following four equations: $\begin{cases} ab + c + d = 3 \\ bc + d + a = 5 \\ cd + a + b = 2 \\ da + b + c = 6 \end{cases}$

2007 Switzerland - Final Round, 1

Determine all positive real solutions of the following system of equations: $$a =\ max \{ \frac{1}{b} , \frac{1}{c}\} \,\,\,\,\,\, b = \max \{ \frac{1}{c} , \frac{1}{d}\} \,\,\,\,\,\, c = \max \{ \frac{1}{d}, \frac{1}{e}\} $$ $$d = \max \{ \frac{1}{e} , \frac{1}{f }\} \,\,\,\,\,\, e = \max \{ \frac{1}{f} , \frac{1}{a}\} \,\,\,\,\,\, f = \max \{ \frac{1}{a} , \frac{1}{b}\}$$

1983 Spain Mathematical Olympiad, 6

In a cafeteria, a glass of lemonade, three sandwiches and seven biscuits have cost $1$ shilling and $2$ pence, and a glass of lemonade, four sandwiches and $10$ biscuits they are worth $1$ shilling and $5$ pence. Find the price of: a) a glass of lemonade, a sandwich and a cake; b) two glasses of lemonade, three sandwiches and five biscuits. ($1$ shilling = $12$ pence).

1981 Brazil National Olympiad, 1

For which $k$ does the system $x^2 - y^2 = 0, (x-k)^2 + y^2 = 1$ have exactly: (i) two, (ii) three real solutions?

2012 Junior Balkan Team Selection Tests - Romania, 1

Let $a, b, c, d$ be distinct non-zero real numbers satisfying the following two conditions: $ac = bd$ and $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}= 4$. Determine the largest possible value of the expression $\frac{a}{c}+\frac{c}{a}+\frac{b}{d}+\frac{d}{b}$.

2015 Polish MO Finals, 1

Solve the system $$\begin{cases} x+y+z=1\\ x^5+y^5+z^5=1\end{cases}$$ in real numbers.

1984 Swedish Mathematical Competition, 5

Solve in natural numbers $a,b,c$ the system \[\left\{ \begin{array}{l}a^3 -b^3 -c^3 = 3abc \\ a^2 = 2(a+b+c)\\ \end{array} \right. \]

2010 Contests, 4

The sequence of Fibonnaci's numbers if defined from the two first digits $f_1=f_2=1$ and the formula $f_{n+2}=f_{n+1}+f_n$, $\forall n \in N$. [b](a)[/b] Prove that $f_{2010} $ is divisible by $10$. [b](b)[/b] Is $f_{1005}$ divisible by $4$? Albanian National Mathematical Olympiad 2010---12 GRADE Question 4.

1982 Czech and Slovak Olympiad III A, 6

Let $n,k$ be given natural numbers. Determine all ordered n-tuples of non-negative real numbers $(x_1,x_2,...,x_n)$ that satisfy the system of equations $$x_1^k+x_2^k+...+x_n^k=1$$ $$(1+x_1)(1+x_2)...(1+x_n)=2$$

2013 AIME Problems, 13

In $\triangle ABC$, $AC = BC$, and point $D$ is on $\overline{BC}$ so that $CD = 3 \cdot BD$. Let $E$ be the midpoint of $\overline{AD}$. Given that $CE = \sqrt{7}$ and $BE = 3$, the area of $\triangle ABC$ can be expressed in the form $m\sqrt{n}$, where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m+n$.

1977 Czech and Slovak Olympiad III A, 4

Determine all real solutions of the system \begin{align*} x+y+z &=3, \\ \frac1x+\frac1y+\frac1z &= \frac{5}{12}, \\ x^3+y^3+z^3 &=45. \end{align*}