This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1973 Czech and Slovak Olympiad III A, 2

Given a tetrahedron $A_1A_2A_3A_4$, define an $A_1$-exsphere such a sphere that is tangent to all planes given by faces of the tetrahedron and the vertex $A_1$ and the sphere are separated by the plane $A_2A_3A_4.$ Denote $\varrho_1,\ldots,\varrho_4$ of all four exspheres. Furthermore, denote $v_i, i=1,\ldots,4$ the distance of the vertex $A_i$ from the opposite face. Show that \[2\left(\frac{1}{v_1}+\frac{1}{v_2}+\frac{1}{v_3}+\frac{1}{v_4}\right)=\frac{1}{\varrho_1}+\frac{1}{\varrho_2}+\frac{1}{\varrho_3}+\frac{1}{\varrho_4}.\]

1989 Romania Team Selection Test, 4

Let $A,B,C$ be variable points on edges $OX,OY,OZ$ of a trihedral angle $OXYZ$, respectively. Let $OA = a, OB = b, OC = c$ and $R$ be the radius of the circumsphere $S$ of $OABC$. Prove that if points $A,B,C$ vary so that $a+b+c = R+l$, then the sphere $S$ remains tangent to a fixed sphere.