Found problems: 3
2019 IMO Shortlist, C5
A social network has $2019$ users, some pairs of whom are friends. Whenever user $A$ is friends with user $B$, user $B$ is also friends with user $A$. Events of the following kind may happen repeatedly, one at a time:
[list]
[*] Three users $A$, $B$, and $C$ such that $A$ is friends with both $B$ and $C$, but $B$ and $C$ are not friends, change their friendship statuses such that $B$ and $C$ are now friends, but $A$ is no longer friends with $B$, and no longer friends with $C$. All other friendship statuses are unchanged.
[/list]
Initially, $1010$ users have $1009$ friends each, and $1009$ users have $1010$ friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.
[i]Proposed by Adrian Beker, Croatia[/i]
1994 IMO Shortlist, 5
$ 1994$ girls are seated at a round table. Initially one girl holds $ n$ tokens. Each turn a girl who is holding more than one token passes one token to each of her neighbours.
a.) Show that if $ n < 1994$, the game must terminate.
b.) Show that if $ n \equal{} 1994$ it cannot terminate.
2019 IMO, 3
A social network has $2019$ users, some pairs of whom are friends. Whenever user $A$ is friends with user $B$, user $B$ is also friends with user $A$. Events of the following kind may happen repeatedly, one at a time:
[list]
[*] Three users $A$, $B$, and $C$ such that $A$ is friends with both $B$ and $C$, but $B$ and $C$ are not friends, change their friendship statuses such that $B$ and $C$ are now friends, but $A$ is no longer friends with $B$, and no longer friends with $C$. All other friendship statuses are unchanged.
[/list]
Initially, $1010$ users have $1009$ friends each, and $1009$ users have $1010$ friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.
[i]Proposed by Adrian Beker, Croatia[/i]