This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 93

2000 IMO Shortlist, 1

Let $ a, b, c$ be positive real numbers so that $ abc \equal{} 1$. Prove that \[ \left( a \minus{} 1 \plus{} \frac 1b \right) \left( b \minus{} 1 \plus{} \frac 1c \right) \left( c \minus{} 1 \plus{} \frac 1a \right) \leq 1. \]

2010 Brazil Team Selection Test, 3

Let $a$, $b$, $c$ be positive real numbers such that $\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = a+b+c$. Prove that: \[\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16}.\] [i]Proposed by Juhan Aru, Estonia[/i]

2014 Contests, 4

Let $a,b,c$ be real numbers such that $a+b+c = 4$ and $a,b,c > 1$. Prove that: \[\frac 1{a-1} + \frac 1{b-1} + \frac 1{c-1} \ge \frac 8{a+b} + \frac 8{b+c} + \frac 8{c+a}\]

1992 IMO Longlists, 21

Prove that if $x,y,z >1$ and $\frac 1x +\frac 1y +\frac 1z = 2$, then \[\sqrt{x+y+z} \geq \sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}.\]

2016 Iran MO (3rd Round), 2

Let $a,b,c \in \mathbb {R}^{+}$ and $abc=1$ prove that: $\frac {a+b}{(a+b+1)^2}+\frac {b+c}{(b+c+1)^2}+\frac {c+a}{(c+a+1)^2} \geq \frac {2}{a+b+c}$

1969 IMO Longlists, 69

$(YUG 1)$ Suppose that positive real numbers $x_1, x_2, x_3$ satisfy $x_1x_2x_3 > 1, x_1 + x_2 + x_3 <\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$ Prove that: $(a)$ None of $x_1, x_2, x_3$ equals $1$. $(b)$ Exactly one of these numbers is less than $1.$

2017 Estonia Team Selection Test, 8

Let $a$, $b$, $c$ be positive real numbers such that $\min(ab,bc,ca) \ge 1$. Prove that $$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$ [i]Proposed by Tigran Margaryan, Armenia[/i]

2014 Indonesia MO Shortlist, A4

Prove that for every real positive number $a, b, c$ with $1 \le a, b, c \le 8$ the inequality $$\frac{a+b+c}{5}\le \sqrt[3]{abc}$$

2007 China Western Mathematical Olympiad, 3

Let $ a,b,c$ be real numbers such that $ a\plus{}b\plus{}c\equal{}3$. Prove that \[\frac{1}{5a^2\minus{}4a\plus{}11}\plus{}\frac{1}{5b^2\minus{}4b\plus{}11}\plus{}\frac{1}{5c^2\minus{}4c\plus{}11}\leq\frac{1}{4}\]

2009 IMO Shortlist, 2

Let $a$, $b$, $c$ be positive real numbers such that $\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = a+b+c$. Prove that: \[\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16}.\] [i]Proposed by Juhan Aru, Estonia[/i]

1999 Canada National Olympiad, 5

Let $ x$, $ y$, and $ z$ be non-negative real numbers satisfying $ x \plus{} y \plus{} z \equal{} 1$. Show that \[ x^2 y \plus{} y^2 z \plus{} z^2 x \leq \frac {4}{27} \] and find when equality occurs.

2018 Azerbaijan BMO TST, 2

Let $M = \{(a,b,c)\in R^3 :0 <a,b,c<\frac12$ with $a+b+c=1 \}$ and $f: M\to R$ given as $$f(a,b,c)=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{abc}$$ Find the best (real) bounds $\alpha$ and $\beta$ such that $f(M) = \{f(a,b,c): (a,b,c)\in M\}\subseteq [\alpha,\beta]$ and determine whether any of them is achievable.

1991 Polish MO Finals, 3

If $x, y, z$ are real numbers satisfying $x^2 +y^2 +z^2 = 2$, prove the inequality \[ x + y + z \leq 2 + xyz \] When does equality occur?

2008 Mongolia Team Selection Test, 3

Find the maximum number $ C$ such that for any nonnegative $ x,y,z$ the inequality $ x^3 \plus{} y^3 \plus{} z^3 \plus{} C(xy^2 \plus{} yz^2 \plus{} zx^2) \ge (C \plus{} 1)(x^2 y \plus{} y^2 z \plus{} z^2 x)$ holds.

2009 Dutch IMO TST, 3

Let $a, b$ and $c$ be positive reals such that $a + b + c \ge abc$. Prove that $a^2 + b^2 + c^2 \ge \sqrt3 abc$.

1992 IMO Longlists, 57

For positive numbers $a, b, c$ define $A = \frac{(a + b + c)}{3}$, $G = \sqrt[3]{abc}$, $H = \frac{3}{(a^{-1} + b^{-1} + c^{-1})}.$ Prove that \[ \left( \frac AG \right)^3 \geq \frac 14 + \frac 34 \cdot \frac AH.\]

2011 Balkan MO, 2

Given real numbers $x,y,z$ such that $x+y+z=0$, show that \[\dfrac{x(x+2)}{2x^2+1}+\dfrac{y(y+2)}{2y^2+1}+\dfrac{z(z+2)}{2z^2+1}\ge 0\] When does equality hold?

2004 Serbia Team Selection Test, 2

Let $a$, $b$ and $c$ be real numbers such that $abc=1$. Prove that the most two of numbers $$2a-\frac{1}{b},\ 2b-\frac{1}{c},\ 2c-\frac{1}{a}$$ are greater than $1$.

2016 IMO Shortlist, A1

Let $a$, $b$, $c$ be positive real numbers such that $\min(ab,bc,ca) \ge 1$. Prove that $$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$ [i]Proposed by Tigran Margaryan, Armenia[/i]

2007 Croatia Team Selection Test, 7

Let $a,b,c>0$ such that $a+b+c=1$. Prove: \[\frac{a^{2}}b+\frac{b^{2}}c+\frac{c^{2}}a \ge 3(a^{2}+b^{2}+c^{2}) \]

2009 Serbia National Math Olympiad, 5

Let $x$, $y$, $z$ be arbitrary positive numbers such that $xy+yz+zx=x+y+z$. Prove that $$\frac{1}{x^2+y+1} + \frac{1}{y^2+z+1} + \frac{1}{z^2+x+1} \leq 1$$. When does equality occur? [i]Proposed by Marko Radovanovic[/i]

2006 Vietnam Team Selection Test, 1

Prove that for all real numbers $x,y,z \in [1,2]$ the following inequality always holds: \[ (x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 6(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}). \] When does the equality occur?

1967 IMO Longlists, 37

Prove that for arbitrary positive numbers the following inequality holds \[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3b^3c^3}.\]

2014 Contests, 1

In a non-obtuse triangle $ABC$, prove that \[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \][i]Proposed by Ryan Alweiss[/i]

2010 Spain Mathematical Olympiad, 1

Let $a,b,c$ be three positive real numbers. Show that \[ \frac {a+b+3c}{3a+3b+2c}+\frac {a+3b+c}{3a+2b+3c}+\frac {3a+b+c}{2a+3b+3c} \ge \frac {15}{8}\]