This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 93

2006 Romania Team Selection Test, 4

Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Prove that: \[ \frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2} \geq a^2+b^2+c^2. \]

2007 Romania Team Selection Test, 1

For $n\in\mathbb{N}$, $n\geq 2$, $a_{i}, b_{i}\in\mathbb{R}$, $1\leq i\leq n$, such that \[\sum_{i=1}^{n}a_{i}^{2}=\sum_{i=1}^{n}b_{i}^{2}=1, \sum_{i=1}^{n}a_{i}b_{i}=0. \] Prove that \[\left(\sum_{i=1}^{n}a_{i}\right)^{2}+\left(\sum_{i=1}^{n}b_{i}\right)^{2}\leq n. \] [i]Cezar Lupu & Tudorel Lupu[/i]

2017 Taiwan TST Round 1, 1

Let $a$, $b$, $c$ be positive real numbers such that $\min(ab,bc,ca) \ge 1$. Prove that $$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$ [i]Proposed by Tigran Margaryan, Armenia[/i]

2019 Turkey EGMO TST, 2

Let $a,b,c$ be positive reals such that $abc=1$, $a+b+c=5$ and $$(ab+2a+2b-9)(bc+2b+2c-9)(ca+2c+2a-9)\geq 0$$. Find the minimum value of $$\frac {1}{a}+ \frac {1}{b}+ \frac{1}{c}$$

2007 Korea Junior Math Olympiad, 5

For all positive real numbers $a, b,c.$ Prove the folllowing inequality$$\frac{a}{c+5b}+\frac{b}{a+5c}+\frac{c}{b+5a}\geq\frac{1}{2}.$$

2008 International Zhautykov Olympiad, 3

Let $ a, b, c$ be positive integers for which $ abc \equal{} 1$. Prove that $ \sum \frac{1}{b(a\plus{}b)} \ge \frac{3}{2}$.

2000 Tuymaada Olympiad, 4

Prove that if the product of positive numbers $a,b$ and $c$ equals one, then $\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)}\ge \frac{3}{2}$

2014 JBMO Shortlist, 2

Let $a, b, c$ be positive real numbers such that $abc = \dfrac {1} {8}$. Prove the inequality:$$a ^ 2 + b ^ 2 + c ^ 2 + a ^ 2b ^ 2 + b ^ 2c ^ 2 + c ^ 2a ^ 2 \geq \dfrac {15} {16}$$ When the equality holds?

1984 IMO, 1

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

2014 JBMO Shortlist, 8

Let $\displaystyle {x, y, z}$ be positive real numbers such that $\displaystyle {xyz = 1}$. Prove the inequality:$$\displaystyle{\dfrac{1}{x\left(ay+b\right)}+\dfrac{1}{y\left(az+b\right)}+\dfrac{1}{z\left(ax+b\right)}\geq 3}$$ if: (A) $\displaystyle {a = 0, b = 1}$ (B) $\displaystyle {a = 1, b = 0}$ (C) $\displaystyle {a + b = 1, \; a, b> 0}$ When the equality holds?

2013 European Mathematical Cup, 4

Let $a,b,c$ be positive reals satisfying : \[ \frac{a}{1+b+c}+\frac{b}{1+c+a}+\frac{c}{1+a+b}\ge \frac{ab}{1+a+b}+\frac{bc}{1+b+c}+\frac{ca}{1+c+a} \] Then prove that : \[ \frac{a^2+b^2+c^2}{ab+bc+ca}+a+b+c+2\ge 2(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}) \] [i]Proposed by Dimitar Trenevski[/i]

2015 Postal Coaching, Problem 3

Let $a,b,c \in \mathbb{R^+}$ such that $abc=1$. Prove that $$\sum_{a,b,c} \sqrt{\frac{a}{a+8}} \ge 1$$

1969 IMO Shortlist, 69

$(YUG 1)$ Suppose that positive real numbers $x_1, x_2, x_3$ satisfy $x_1x_2x_3 > 1, x_1 + x_2 + x_3 <\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$ Prove that: $(a)$ None of $x_1, x_2, x_3$ equals $1$. $(b)$ Exactly one of these numbers is less than $1.$

2016 India Regional Mathematical Olympiad, 4

Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Determine, with certainty, the largest possible value of the expression $$ \frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}$$

2015 Saudi Arabia JBMO TST, 1

Let $a,b,c$ be positive real numbers. Prove that: $\left (a+b+c \right )\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right ) \geq 9+3\sqrt[3]{\frac{(a-b)^2(b-c)^2(c-a)^2}{a^2b^2c^2}}$

2007 Bulgarian Autumn Math Competition, Problem 12.3

Find all real numbers $r$, such that the inequality \[r(ab+bc+ca)+(3-r)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9\] holds for any real $a,b,c>0$.

2007 Balkan MO Shortlist, A3

For $n\in\mathbb{N}$, $n\geq 2$, $a_{i}, b_{i}\in\mathbb{R}$, $1\leq i\leq n$, such that \[\sum_{i=1}^{n}a_{i}^{2}=\sum_{i=1}^{n}b_{i}^{2}=1, \sum_{i=1}^{n}a_{i}b_{i}=0. \] Prove that \[\left(\sum_{i=1}^{n}a_{i}\right)^{2}+\left(\sum_{i=1}^{n}b_{i}\right)^{2}\leq n. \] [i]Cezar Lupu & Tudorel Lupu[/i]

2004 China Western Mathematical Olympiad, 4

Suppose that $ a$, $ b$, $ c$ are positive real numbers, prove that \[ 1 < \frac {a}{\sqrt {a^{2} \plus{} b^{2}}} \plus{} \frac {b}{\sqrt {b^{2} \plus{} c^{2}}} \plus{} \frac {c}{\sqrt {c^{2} \plus{} a^{2}}}\leq\frac {3\sqrt {2}}{2} \]

2017 Balkan MO Shortlist, A4

Let $M = \{(a,b,c)\in R^3 :0 <a,b,c<\frac12$ with $a+b+c=1 \}$ and $f: M\to R$ given as $$f(a,b,c)=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{abc}$$ Find the best (real) bounds $\alpha$ and $\beta$ such that $f(M) = \{f(a,b,c): (a,b,c)\in M\}\subseteq [\alpha,\beta]$ and determine whether any of them is achievable.

2008 Iran Team Selection Test, 5

Let $a,b,c > 0$ and $ab+bc+ca = 1$. Prove that: \[ \sqrt {a^3 + a} + \sqrt {b^3 + b} + \sqrt {c^3 + c}\geq2\sqrt {a + b + c}. \]

2016 Greece JBMO TST, 1

a) Prove that, for any real $x>0$, it is true that $x^3-3x\ge -2$ . b) Prove that, for any real $x,y,z>0$, it is true that $$\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}+2\left(\frac{y}{xz}+\frac{z}{xy}+\frac{x}{yz} \right)\ge 9$$ . When we have equality ?

1967 IMO Shortlist, 3

Prove that for arbitrary positive numbers the following inequality holds \[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3b^3c^3}.\]

1996 IMO Shortlist, 1

Suppose that $a, b, c > 0$ such that $abc = 1$. Prove that \[ \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1. \]

2011 Balkan MO Shortlist, A1

Given real numbers $x,y,z$ such that $x+y+z=0$, show that \[\dfrac{x(x+2)}{2x^2+1}+\dfrac{y(y+2)}{2y^2+1}+\dfrac{z(z+2)}{2z^2+1}\ge 0\] When does equality hold?

2015 Azerbaijan JBMO TST, 1

$a,b,c\in\mathbb{R^+}$ and $a^2+b^2+c^2=48$. Prove that \[a^2\sqrt{2b^3+16}+b^2\sqrt{2c^3+16}+c^2\sqrt{2a^3+16}\le24^2\]