This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 93

2014 ELMO Shortlist, 1

In a non-obtuse triangle $ABC$, prove that \[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \][i]Proposed by Ryan Alweiss[/i]

2012 IMAC Arhimede, 6

Let $a,b,c$ be positive real numbers that satisfy the condition $a + b + c = 1$. Prove the inequality $$\frac{a^{-3}+b}{1-a}+\frac{b^{-3}+c}{1-b}+\frac{c^{-3}+a}{1-c}\ge 123$$

2017 Estonia Team Selection Test, 8

Let $a$, $b$, $c$ be positive real numbers such that $\min(ab,bc,ca) \ge 1$. Prove that $$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$ [i]Proposed by Tigran Margaryan, Armenia[/i]

2014 Macedonia National Olympiad, 4

Let $a,b,c$ be real numbers such that $a+b+c = 4$ and $a,b,c > 1$. Prove that: \[\frac 1{a-1} + \frac 1{b-1} + \frac 1{c-1} \ge \frac 8{a+b} + \frac 8{b+c} + \frac 8{c+a}\]

2010 Contests, 4

Let $ x$, $ y$, $ z \in\mathbb{R}^+$ satisfying $ xyz = 1$. Prove that \[ \frac {(x + y - 1)^2}{z} + \frac {(y + z - 1)^2}{x} + \frac {(z + x - 1)^2}{y}\geqslant x + y + z\mbox{.}\]

2010 Switzerland - Final Round, 4

Let $ x$, $ y$, $ z \in\mathbb{R}^+$ satisfying $ xyz = 1$. Prove that \[ \frac {(x + y - 1)^2}{z} + \frac {(y + z - 1)^2}{x} + \frac {(z + x - 1)^2}{y}\geqslant x + y + z\mbox{.}\]

2005 Vietnam Team Selection Test, 1

Let be given positive reals $a$, $b$, $c$. Prove that: $\frac{a^{3}}{\left(a+b\right)^{3}}+\frac{b^{3}}{\left(b+c\right)^{3}}+\frac{c^{3}}{\left(c+a\right)^{3}}\geq \frac{3}{8}$.

1984 IMO Longlists, 20

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

2013 Tuymaada Olympiad, 4

Prove that if $x$, $y$, $z$ are positive real numbers and $xyz = 1$ then \[\frac{x^3}{x^2+y}+\frac{y^3}{y^2+z}+\frac{z^3}{z^2+x}\geq \dfrac {3} {2}.\] [i]A. Golovanov[/i]

2009 Kyiv Mathematical Festival, 2

Let $x,y,z$ be positive numebrs such that $x+y+z\le x^3+y^3+z^3$. Is it true that a) $x^2+y^2+z^2 \le x^3+y^3+z^3$ ? b) $x+y+z\le x^2+y^2+z^2$ ?

2009 Dutch IMO TST, 3

Let $a, b$ and $c$ be positive reals such that $a + b + c \ge abc$. Prove that $a^2 + b^2 + c^2 \ge \sqrt3 abc$.

2007 Croatia Team Selection Test, 7

Let $a,b,c>0$ such that $a+b+c=1$. Prove: \[\frac{a^{2}}b+\frac{b^{2}}c+\frac{c^{2}}a \ge 3(a^{2}+b^{2}+c^{2}) \]

2011 Romania Team Selection Test, 2

Given real numbers $x,y,z$ such that $x+y+z=0$, show that \[\dfrac{x(x+2)}{2x^2+1}+\dfrac{y(y+2)}{2y^2+1}+\dfrac{z(z+2)}{2z^2+1}\ge 0\] When does equality hold?

2005 IMAR Test, 1

Let $a,b,c$ be positive real numbers such that $abc\geq 1$. Prove that \[ \frac{1}{1+b+c}+\frac{1}{1+c+a}+\frac{1}{1+a+b}\leq 1. \] [hide="Remark"]This problem derives from the well known inequality given in [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=185470#p185470]USAMO 1997, Problem 5[/url]. [/hide]

2014 India Regional Mathematical Olympiad, 5

Let $a,b,c$ be positive real numbers such that \[ \cfrac{1}{1+a}+\cfrac{1}{1+b}+\cfrac{1}{1+c}\le 1. \] Prove that $(1+a^2)(1+b^2)(1+c^2)\ge 125$. When does equality hold?

2000 Baltic Way, 16

Prove that for all positive real numbers $a,b,c$ we have \[\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}\ge\sqrt{a^2+ac+c^2} \]

2000 IMO, 2

Let $ a, b, c$ be positive real numbers so that $ abc \equal{} 1$. Prove that \[ \left( a \minus{} 1 \plus{} \frac 1b \right) \left( b \minus{} 1 \plus{} \frac 1c \right) \left( c \minus{} 1 \plus{} \frac 1a \right) \leq 1. \]

2005 Bosnia and Herzegovina Team Selection Test, 2

If $a_1$, $a_2$ and $a_3$ are nonnegative real numbers for which $a_1+a_2+a_3=1$, then prove the inequality $a_1\sqrt{a_2}+a_2\sqrt{a_3}+a_3\sqrt{a_1}\leq \frac{1}{\sqrt{3}}$