This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 10

2010 IMO Shortlist, 2

Let $P$ be a point interior to triangle $ABC$ (with $CA \neq CB$). The lines $AP$, $BP$ and $CP$ meet again its circumcircle $\Gamma$ at $K$, $L$, respectively $M$. The tangent line at $C$ to $\Gamma$ meets the line $AB$ at $S$. Show that from $SC = SP$ follows $MK = ML$. [i]Proposed by Marcin E. Kuczma, Poland[/i]

2022 Germany Team Selection Test, 1

Given a triangle $ABC$ and three circles $x$, $y$ and $z$ such that $A \in y \cap z$, $B \in z \cap x$ and $C \in x \cap y$. The circle $x$ intersects the line $AC$ at the points $X_b$ and $C$, and intersects the line $AB$ at the points $X_c$ and $B$. The circle $y$ intersects the line $BA$ at the points $Y_c$ and $A$, and intersects the line $BC$ at the points $Y_a$ and $C$. The circle $z$ intersects the line $CB$ at the points $Z_a$ and $B$, and intersects the line $CA$ at the points $Z_b$ and $A$. (Yes, these definitions have the symmetries you would expect.) Prove that the perpendicular bisectors of the segments $Y_a Z_a$, $Z_b X_b$ and $X_c Y_c$ concur.

2022 Germany Team Selection Test, 3

Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be a point in the plane such that $AP \perp BC$. Let $Q$ and $R$ be the reflections of $P$ in the lines $CA$ and $AB$, respectively. Let $Y$ be the orthogonal projection of $R$ onto $CA$. Let $Z$ be the orthogonal projection of $Q$ onto $AB$. Assume that $H \neq O$ and $Y \neq Z$. Prove that $YZ \perp HO$. [asy] import olympiad; unitsize(30); pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2; A = (-14.8, -6.6); B = (-10.9, 0.3); C = (-3.1, -7.1); O = circumcenter(A,B,C); H = orthocenter(A,B,C); P = 1.2 * H - 0.2 * A; Q = reflect(A, C) * P; R = reflect(A, B) * P; Y = foot(R, C, A); Z = foot(Q, A, B); P2 = foot(A, B, C); Q2 = foot(P, C, A); R2 = foot(P, A, B); draw(B--(1.6*A-0.6*B)); draw(B--C--A); draw(P--R, blue); draw(R--Y, red); draw(P--Q, blue); draw(Q--Z, red); draw(A--P2, blue); draw(O--H, darkgreen+linewidth(1.2)); draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2)); draw(rightanglemark(R,Y,A,10), red); draw(rightanglemark(Q,Z,B,10), red); draw(rightanglemark(C,Q2,P,10), blue); draw(rightanglemark(A,R2,P,10), blue); draw(rightanglemark(B,P2,H,10), blue); label("$\textcolor{blue}{H}$",H,NW); label("$\textcolor{blue}{P}$",P,N); label("$A$",A,W); label("$B$",B,N); label("$C$",C,S); label("$O$",O,S); label("$\textcolor{blue}{Q}$",Q,E); label("$\textcolor{blue}{R}$",R,W); label("$\textcolor{red}{Y}$",Y,S); label("$\textcolor{red}{Z}$",Z,NW); dot(A, filltype=FillDraw(black)); dot(B, filltype=FillDraw(black)); dot(C, filltype=FillDraw(black)); dot(H, filltype=FillDraw(blue)); dot(P, filltype=FillDraw(blue)); dot(Q, filltype=FillDraw(blue)); dot(R, filltype=FillDraw(blue)); dot(Y, filltype=FillDraw(red)); dot(Z, filltype=FillDraw(red)); dot(O, filltype=FillDraw(black)); [/asy]

1959 AMC 12/AHSME, 36

The base of a triangle is $80$, and one side of the base angle is $60^\circ$. The sum of the lengths of the other two sides is $90$. The shortest side is: $ \textbf{(A)}\ 45 \qquad\textbf{(B)}\ 40\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 12 $

2021 Polish Junior MO Finals, 2

Point $M$ is the midpoint of the hypotenuse $AB$ of a right angled triangle $ABC$. Points $P$ and $Q$ lie on segments $AM$ and $MB$ respectively and $PQ=CQ$. Prove that $AP\leq 2\cdot MQ$.

2023 Turkey Olympic Revenge, 2

Let $ABC$ be a triangle. A point $D$ lies on line $BC$ and points $E,F$ are taken on $AC,AB$ such that $DE \parallel AB$ and $DF\parallel AC$. Let $G = (AEF) \cap (ABC) \neq A$ and $I = (DEF) \cap BC\neq D$. Let $H$ and $O$ denote the orthocenter and the circumcenter of triangle $DEF$. Prove that $A,O,I$ are collinear if and only if $G,H,I$ are collinear. [i]Proposed by Kaan Bilge[/i]

1959 AMC 12/AHSME, 40

In triangle $ABC$, $BD$ is a median. $CF$ intersects $BD$ at $E$ so that $\overline{BE}=\overline{ED}$. Point $F$ is on $AB$. Then, if $\overline{BF}=5$, $\overline{BA}$ equals: $ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ \text{none of these} $

2010 IMO, 4

Let $P$ be a point interior to triangle $ABC$ (with $CA \neq CB$). The lines $AP$, $BP$ and $CP$ meet again its circumcircle $\Gamma$ at $K$, $L$, respectively $M$. The tangent line at $C$ to $\Gamma$ meets the line $AB$ at $S$. Show that from $SC = SP$ follows $MK = ML$. [i]Proposed by Marcin E. Kuczma, Poland[/i]

2022 Germany Team Selection Test, 1

Given a triangle $ABC$ and three circles $x$, $y$ and $z$ such that $A \in y \cap z$, $B \in z \cap x$ and $C \in x \cap y$. The circle $x$ intersects the line $AC$ at the points $X_b$ and $C$, and intersects the line $AB$ at the points $X_c$ and $B$. The circle $y$ intersects the line $BA$ at the points $Y_c$ and $A$, and intersects the line $BC$ at the points $Y_a$ and $C$. The circle $z$ intersects the line $CB$ at the points $Z_a$ and $B$, and intersects the line $CA$ at the points $Z_b$ and $A$. (Yes, these definitions have the symmetries you would expect.) Prove that the perpendicular bisectors of the segments $Y_a Z_a$, $Z_b X_b$ and $X_c Y_c$ concur.

2022 Germany Team Selection Test, 3

Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be a point in the plane such that $AP \perp BC$. Let $Q$ and $R$ be the reflections of $P$ in the lines $CA$ and $AB$, respectively. Let $Y$ be the orthogonal projection of $R$ onto $CA$. Let $Z$ be the orthogonal projection of $Q$ onto $AB$. Assume that $H \neq O$ and $Y \neq Z$. Prove that $YZ \perp HO$. [asy] import olympiad; unitsize(30); pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2; A = (-14.8, -6.6); B = (-10.9, 0.3); C = (-3.1, -7.1); O = circumcenter(A,B,C); H = orthocenter(A,B,C); P = 1.2 * H - 0.2 * A; Q = reflect(A, C) * P; R = reflect(A, B) * P; Y = foot(R, C, A); Z = foot(Q, A, B); P2 = foot(A, B, C); Q2 = foot(P, C, A); R2 = foot(P, A, B); draw(B--(1.6*A-0.6*B)); draw(B--C--A); draw(P--R, blue); draw(R--Y, red); draw(P--Q, blue); draw(Q--Z, red); draw(A--P2, blue); draw(O--H, darkgreen+linewidth(1.2)); draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2)); draw(rightanglemark(R,Y,A,10), red); draw(rightanglemark(Q,Z,B,10), red); draw(rightanglemark(C,Q2,P,10), blue); draw(rightanglemark(A,R2,P,10), blue); draw(rightanglemark(B,P2,H,10), blue); label("$\textcolor{blue}{H}$",H,NW); label("$\textcolor{blue}{P}$",P,N); label("$A$",A,W); label("$B$",B,N); label("$C$",C,S); label("$O$",O,S); label("$\textcolor{blue}{Q}$",Q,E); label("$\textcolor{blue}{R}$",R,W); label("$\textcolor{red}{Y}$",Y,S); label("$\textcolor{red}{Z}$",Z,NW); dot(A, filltype=FillDraw(black)); dot(B, filltype=FillDraw(black)); dot(C, filltype=FillDraw(black)); dot(H, filltype=FillDraw(blue)); dot(P, filltype=FillDraw(blue)); dot(Q, filltype=FillDraw(blue)); dot(R, filltype=FillDraw(blue)); dot(Y, filltype=FillDraw(red)); dot(Z, filltype=FillDraw(red)); dot(O, filltype=FillDraw(black)); [/asy]