Found problems: 10
2010 IMO Shortlist, 2
Let $P$ be a point interior to triangle $ABC$ (with $CA \neq CB$). The lines $AP$, $BP$ and $CP$ meet again its circumcircle $\Gamma$ at $K$, $L$, respectively $M$. The tangent line at $C$ to $\Gamma$ meets the line $AB$ at $S$. Show that from $SC = SP$ follows $MK = ML$.
[i]Proposed by Marcin E. Kuczma, Poland[/i]
2022 Germany Team Selection Test, 1
Given a triangle $ABC$ and three circles $x$, $y$ and $z$ such that $A \in y \cap z$, $B \in z \cap x$ and $C \in x \cap y$.
The circle $x$ intersects the line $AC$ at the points $X_b$ and $C$, and intersects the line $AB$ at the points $X_c$ and $B$.
The circle $y$ intersects the line $BA$ at the points $Y_c$ and $A$, and intersects the line $BC$ at the points $Y_a$ and $C$.
The circle $z$ intersects the line $CB$ at the points $Z_a$ and $B$, and intersects the line $CA$ at the points $Z_b$ and $A$.
(Yes, these definitions have the symmetries you would expect.)
Prove that the perpendicular bisectors of the segments $Y_a Z_a$, $Z_b X_b$ and $X_c Y_c$ concur.
2022 Germany Team Selection Test, 3
Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be a point in the plane such that $AP \perp BC$. Let $Q$ and $R$ be the reflections of $P$ in the lines $CA$ and $AB$, respectively. Let $Y$ be the orthogonal projection of $R$ onto $CA$. Let $Z$ be the orthogonal projection of $Q$ onto $AB$. Assume that $H \neq O$ and $Y \neq Z$. Prove that $YZ \perp HO$.
[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2;
A = (-14.8, -6.6);
B = (-10.9, 0.3);
C = (-3.1, -7.1);
O = circumcenter(A,B,C);
H = orthocenter(A,B,C);
P = 1.2 * H - 0.2 * A;
Q = reflect(A, C) * P;
R = reflect(A, B) * P;
Y = foot(R, C, A);
Z = foot(Q, A, B);
P2 = foot(A, B, C);
Q2 = foot(P, C, A);
R2 = foot(P, A, B);
draw(B--(1.6*A-0.6*B));
draw(B--C--A);
draw(P--R, blue);
draw(R--Y, red);
draw(P--Q, blue);
draw(Q--Z, red);
draw(A--P2, blue);
draw(O--H, darkgreen+linewidth(1.2));
draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2));
draw(rightanglemark(R,Y,A,10), red);
draw(rightanglemark(Q,Z,B,10), red);
draw(rightanglemark(C,Q2,P,10), blue);
draw(rightanglemark(A,R2,P,10), blue);
draw(rightanglemark(B,P2,H,10), blue);
label("$\textcolor{blue}{H}$",H,NW);
label("$\textcolor{blue}{P}$",P,N);
label("$A$",A,W);
label("$B$",B,N);
label("$C$",C,S);
label("$O$",O,S);
label("$\textcolor{blue}{Q}$",Q,E);
label("$\textcolor{blue}{R}$",R,W);
label("$\textcolor{red}{Y}$",Y,S);
label("$\textcolor{red}{Z}$",Z,NW);
dot(A, filltype=FillDraw(black));
dot(B, filltype=FillDraw(black));
dot(C, filltype=FillDraw(black));
dot(H, filltype=FillDraw(blue));
dot(P, filltype=FillDraw(blue));
dot(Q, filltype=FillDraw(blue));
dot(R, filltype=FillDraw(blue));
dot(Y, filltype=FillDraw(red));
dot(Z, filltype=FillDraw(red));
dot(O, filltype=FillDraw(black));
[/asy]
1959 AMC 12/AHSME, 36
The base of a triangle is $80$, and one side of the base angle is $60^\circ$. The sum of the lengths of the other two sides is $90$. The shortest side is:
$ \textbf{(A)}\ 45 \qquad\textbf{(B)}\ 40\qquad\textbf{(C)}\ 36\qquad\textbf{(D)}\ 17\qquad\textbf{(E)}\ 12 $
2021 Polish Junior MO Finals, 2
Point $M$ is the midpoint of the hypotenuse $AB$ of a right angled triangle $ABC$. Points $P$ and $Q$ lie on segments $AM$ and $MB$ respectively and $PQ=CQ$. Prove that $AP\leq 2\cdot MQ$.
2023 Turkey Olympic Revenge, 2
Let $ABC$ be a triangle. A point $D$ lies on line $BC$ and points $E,F$ are taken on $AC,AB$ such that $DE \parallel AB$ and $DF\parallel AC$. Let $G = (AEF) \cap (ABC) \neq A$ and $I = (DEF) \cap BC\neq D$. Let $H$ and $O$ denote the orthocenter and the circumcenter of triangle $DEF$. Prove that $A,O,I$ are collinear if and only if $G,H,I$ are collinear.
[i]Proposed by Kaan Bilge[/i]
1959 AMC 12/AHSME, 40
In triangle $ABC$, $BD$ is a median. $CF$ intersects $BD$ at $E$ so that $\overline{BE}=\overline{ED}$. Point $F$ is on $AB$. Then, if $\overline{BF}=5$, $\overline{BA}$ equals:
$ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 15\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ \text{none of these} $
2010 IMO, 4
Let $P$ be a point interior to triangle $ABC$ (with $CA \neq CB$). The lines $AP$, $BP$ and $CP$ meet again its circumcircle $\Gamma$ at $K$, $L$, respectively $M$. The tangent line at $C$ to $\Gamma$ meets the line $AB$ at $S$. Show that from $SC = SP$ follows $MK = ML$.
[i]Proposed by Marcin E. Kuczma, Poland[/i]
2022 Germany Team Selection Test, 1
Given a triangle $ABC$ and three circles $x$, $y$ and $z$ such that $A \in y \cap z$, $B \in z \cap x$ and $C \in x \cap y$.
The circle $x$ intersects the line $AC$ at the points $X_b$ and $C$, and intersects the line $AB$ at the points $X_c$ and $B$.
The circle $y$ intersects the line $BA$ at the points $Y_c$ and $A$, and intersects the line $BC$ at the points $Y_a$ and $C$.
The circle $z$ intersects the line $CB$ at the points $Z_a$ and $B$, and intersects the line $CA$ at the points $Z_b$ and $A$.
(Yes, these definitions have the symmetries you would expect.)
Prove that the perpendicular bisectors of the segments $Y_a Z_a$, $Z_b X_b$ and $X_c Y_c$ concur.
2022 Germany Team Selection Test, 3
Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be a point in the plane such that $AP \perp BC$. Let $Q$ and $R$ be the reflections of $P$ in the lines $CA$ and $AB$, respectively. Let $Y$ be the orthogonal projection of $R$ onto $CA$. Let $Z$ be the orthogonal projection of $Q$ onto $AB$. Assume that $H \neq O$ and $Y \neq Z$. Prove that $YZ \perp HO$.
[asy]
import olympiad;
unitsize(30);
pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2;
A = (-14.8, -6.6);
B = (-10.9, 0.3);
C = (-3.1, -7.1);
O = circumcenter(A,B,C);
H = orthocenter(A,B,C);
P = 1.2 * H - 0.2 * A;
Q = reflect(A, C) * P;
R = reflect(A, B) * P;
Y = foot(R, C, A);
Z = foot(Q, A, B);
P2 = foot(A, B, C);
Q2 = foot(P, C, A);
R2 = foot(P, A, B);
draw(B--(1.6*A-0.6*B));
draw(B--C--A);
draw(P--R, blue);
draw(R--Y, red);
draw(P--Q, blue);
draw(Q--Z, red);
draw(A--P2, blue);
draw(O--H, darkgreen+linewidth(1.2));
draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2));
draw(rightanglemark(R,Y,A,10), red);
draw(rightanglemark(Q,Z,B,10), red);
draw(rightanglemark(C,Q2,P,10), blue);
draw(rightanglemark(A,R2,P,10), blue);
draw(rightanglemark(B,P2,H,10), blue);
label("$\textcolor{blue}{H}$",H,NW);
label("$\textcolor{blue}{P}$",P,N);
label("$A$",A,W);
label("$B$",B,N);
label("$C$",C,S);
label("$O$",O,S);
label("$\textcolor{blue}{Q}$",Q,E);
label("$\textcolor{blue}{R}$",R,W);
label("$\textcolor{red}{Y}$",Y,S);
label("$\textcolor{red}{Z}$",Z,NW);
dot(A, filltype=FillDraw(black));
dot(B, filltype=FillDraw(black));
dot(C, filltype=FillDraw(black));
dot(H, filltype=FillDraw(blue));
dot(P, filltype=FillDraw(blue));
dot(Q, filltype=FillDraw(blue));
dot(R, filltype=FillDraw(blue));
dot(Y, filltype=FillDraw(red));
dot(Z, filltype=FillDraw(red));
dot(O, filltype=FillDraw(black));
[/asy]