This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2021 Indonesia MO, 8

On a $100 \times 100$ chessboard, the plan is to place several $1 \times 3$ boards and $3 \times 1$ board, so that [list] [*] Each tile of the initial chessboard is covered by at most one small board. [*] The boards cover the entire chessboard tile, except for one tile. [*] The sides of the board are placed parallel to the chessboard. [/list] Suppose that to carry out the instructions above, it takes $H$ number of $1 \times 3$ boards and $V$ number of $3 \times 1$ boards. Determine all possible pairs of $(H,V)$. [i]Proposed by Muhammad Afifurrahman, Indonesia[/i]

1981 Bundeswettbewerb Mathematik, 3

A square of sidelength $2^n$ is divided into unit squares. One of the unit squares is deleted. Prove that the rest of the square can be tiled with $L$-trominos.