This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 109

2000 All-Russian Olympiad Regional Round, 9.1

Tags: trinomial , algebra
Misha solved the equation $x^2 + ax + b = 0$ and told Dima the set of four numbers - two roots and two coefficients of this equation (but not said which of them are roots and which are coefficients). Will he be able to Dima, find out what equation Misha solved if all the numbers in the set turned out to be different?

1998 Denmark MO - Mohr Contest, 2

For any real number$m$, the equation $$x^2+(m-2)x- (m+3)=0$$ has two solutions, denoted $x_1 $and $ x_2$. Determine $m$ such that $x_1^2+x_2^2$ is the minimum possible.

1990 All Soviet Union Mathematical Olympiad, 529

A quadratic polynomial $p(x)$ has positive real coefficients with sum $1$. Show that given any positive real numbers with product $1$, the product of their values under $p$ is at least $1$.

2009 Puerto Rico Team Selection Test, 4

Find all integers $ b$ and $ c$ such that the equation $ x^2 - bx + c = 0$ has two real roots $ x_1, x_2$ satisfying $ x_1^2 + x_2^2 = 5$.

2018 Czech-Polish-Slovak Junior Match, 3

Calculate all real numbers $r $ with the following properties: If real numbers $a, b, c$ satisfy the inequality$ | ax^2 + bx + c | \le 1$ for each $x \in [ - 1, 1]$, then they also satisfy the inequality $| cx^2 + bx + a | \le r$ for each $ x \in [- 1, 1]$.

2003 Czech And Slovak Olympiad III A, 5

Show that, for each integer $z \ge 3$, there exist two two-digit numbers $A$ and $B$ in base $z$, one equal to the other one read in reverse order, such that the equation $x^2 -Ax+B$ has one double root. Prove that this pair is unique for a given $z$. For instance, in base $10$ these numbers are $A = 18, B = 81$.

1994 All-Russian Olympiad Regional Round, 9.3

Does there exist a quadratic trinomial $p(x)$ with integer coefficients such that, for every natural number $n$ whose decimal representation consists of digits $1$, $p(n)$ also consists only of digits $1$?

2009 Bundeswettbewerb Mathematik, 2

Let $n$ be an integer that is greater than $1$. Prove that the following two statements are equivalent: (A) There are positive integers $a, b$ and $c$ that are not greater than $n$ and for which that polynomial $ax^2 + bx + c$ has two different real roots $x_1$ and $x_2$ with $| x_2- x_1 | \le \frac{1}{n}$ (B) The number $n$ has at least two different prime divisors.

1949-56 Chisinau City MO, 18

Tags: trinomial , algebra
Prove that if the numbers $a, b, c$ are the lengths of the sides of some nondegenerate triangle, then the equation $$b^2x^2 + (b^2 + c^2 - a^2) x + c^2 = 0$$ has imaginary roots.

1993 ITAMO, 2

Find all pairs $(p,q)$ of positive primes such that the equation $3x^2 - px + q = 0$ has two distinct rational roots.

2003 All-Russian Olympiad Regional Round, 11.5

Tags: algebra , trinomial
Square trinomials $P(x) = x^2 + ax + b$ and $Q(x) = x^2 + cx + d$ are such that the equation $P(Q(x)) = Q(P(x))$ has no real roots. Prove that $b \ne d$.

2001 All-Russian Olympiad Regional Round, 9.2

Tags: game , algebra , trinomial
Petya and Kolya play the following game: they take turns changing one of the coefficients $a$ or $b$ of the quadratic trinomial $f = x^2 + ax + b$: Petya is on $1$, Kolya is on $1$ or $3$. Kolya wins if after the move of one of the players a trinomial is obtained that has whole roots. Is it true that Kolya can win for any initial integer odds $a$ and $b$ regardless of Petya's game? [hide=original wording]Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трехчлена f = x^2 + ax + b: Петя на 1, Коля- на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трехчлен, имеющий целые корни. Верно ли, что Коля может выигратьпр и любых начальных целых коэффициентах a и b независимо от игры Пети?[/hide]

2019 BMT Spring, 1

How many integers $ x $ satisfy $ x^2 - 9x + 18 < 0 $?

2016 Hanoi Open Mathematics Competitions, 14

Let $f (x) = x^2 + px + q$, where $p, q$ are integers. Prove that there is an integer $m$ such that $f (m) = f (2015) \cdot f (2016)$.

2005 Junior Tuymaada Olympiad, 5

Given the quadratic trinomial $ f (x) = x ^ 2 + ax + b $ with integer coefficients, satisfying the inequality $ f (x) \geq - {9 \over 10} $ for any $ x $. Prove that $ f (x) \geq - {1 \over 4} $ for any $ x $.

1971 All Soviet Union Mathematical Olympiad, 149

Prove that if the numbers $p_1, p_2, q_1, q_2$ satisfy the condition $$(q_1 - q_2)^2 + (p_1 - p_2)(p_1q_2 -p_2q_1)<0$$ then the square polynomials $x^2 + p_1x + q_1$ and $x^2 + p_2x + q_2$ have real roots, and between the roots of each there is a root of another one.

2018 Irish Math Olympiad, 3

Find all functions $f(x) = ax^2 + bx + c$, with $a \ne 0$, such that $f(f(1)) = f(f(0)) = f(f(-1))$ .

1990 All Soviet Union Mathematical Olympiad, 516

Find three non-zero reals such that all quadratics with those numbers as coefficients have two distinct rational roots.

2006 Kazakhstan National Olympiad, 2

Product of square trinomials $ x ^ 2 + a_1x + b_1 $, $ x ^ 2 + a_2x + b_2 $, $ \dots $, $ x ^ 2 + a_n x + b_n $ equals polynomial $ P (x) = x ^ {2n} + c_1x ^ {2n-1} + c_2x ^ {2n-2} + \dots + c_ {2n-1} x + c_ {2n} $, where the coefficients $ c_1 $, $ c_2 $, $ \dots $, $ c_ {2n} $ are positive. Prove that for some $ k $ ($ 1 \leq k \leq n $) the coefficients $ a_k $ and $ b_k $ are positive.

VMEO III 2006, 10.4

Tags: algebra , trinomial
Find the least real number $\alpha$ such that there is a real number $\beta$ so that for all triples of real numbers $(a, b,c)$ satisfying $2006a + 10b + c = 0$, the equation $ax^2 + bx + c = 0$ always has real root in the interval $[\beta, \beta + \alpha]$.

1955 Moscow Mathematical Olympiad, 307

* The quadratic expression $ax^2 + bx + c$ is a square (of an integer) for any integer $x$. Prove that $ax^2 + bx + c = (dx + e)^2$ for some integers d and e.

2005 Junior Balkan Team Selection Tests - Moldova, 8

The families of second degree functions $f_m, g_m: R\to R, $ are considered , $f_m (x) = (m^2 + 1) x^2 + 3mx + m^2 - 1$, $g_m (x) = m^2x^2 + mx - 1$, where $m$ is a real nonzero parameter. Show that, for any function $h$ of the second degree with the property that $g_m (x) \le h (x) \le f_m (x)$ for any real $x$, there exists $\lambda \in [0, 1]$ which verifies the condition $h (x) = \lambda f_m (x) + (1- \lambda) g_m (x)$, whatever real $x$ is.

2017 Tuymaada Olympiad, 5

Does there exist a quadratic trinomial $f(x)$ such that $f(1/2017)=1/2018$, $f(1/2018)=1/2017$, and two of its coefficients are integers? (A. Khrabrov)

2000 Czech And Slovak Olympiad IIIA, 4

For which quadratic polynomials $f(x)$ does there exist a quadratic polynomial $g(x)$ such that the equations $g(f(x)) = 0$ and $f(x)g(x) = 0$ have the same roots, which are mutually distinct and form an arithmetic progression?

1973 All Soviet Union Mathematical Olympiad, 180

Tags: trinomial , algebra
The square polynomial $f(x)=ax^2+bx+c$ is of such a sort, that the equation $f(x)=x$ does not have real roots. Prove that the equation $f(f(x))=0$ does not have real roots also.