Found problems: 34
2019 Romania National Olympiad, 2
Find all natural numbers which are the cardinal of a set of nonzero Euclidean vectors whose sum is $ 0, $ the sum of any two of them is nonzero, and their magnitudes are equal.
2017 Brazil Undergrad MO, 5
Let $d\leq n$ be positive integers and $A$ a real $d\times n$ matrix. Let $\sigma(A)$ be the supremum of $\inf_{v\in W,|v|=1}|Av|$ over all subspaces $W$ of $R^n$ with dimension $d$.
For each $j \leq d$, let $r(j) \in \mathbb{R}^n$ be the $j$th row vector of $A$. Show that:
\[\sigma(A) \leq \min_{i\leq d} d(r(i), \langle r(j), j\ne i\rangle) \leq \sqrt{n}\sigma(A)\]
In which all are euclidian norms and $d(r(i), \langle r(j), j\ne i\rangle)$ denotes the distance between $r(i)$ and the span of $r(j), 1 \leq j \leq d, j\ne i$.
2010 N.N. Mihăileanu Individual, 3
Let $ Q $ be a point, $ H,O $ be the orthocenter and circumcenter, respectively, of a triangle $ ABC, $ and $ D,E,F, $ be the symmetric points of $ Q $ with respect to $ A,B,C, $ respectively. Also, $ M,N,P $ are the middle of the segments $ AE,BF,CD, $ and $ G,G',G'' $ are the centroids of $ ABC,MNP,DEF, $ respectively. Prove the following propositions:
[b]a)[/b] $ \frac{1}{2}\overrightarrow{OG} =\frac{1}{3}\overrightarrow{OG'}=\frac{1}{4}\overrightarrow{OG''} $
[b]b)[/b] $ Q=O\implies \overrightarrow{OG'} =\overrightarrow{G'H} $
[b]c)[/b] $ Q=H\implies G'=O $
[i]Cătălin Zîrnă[/i]
2023 District Olympiad, P1
Consider the triangle $ABC{}$ and let $I_A{}$ be its $A{}$-excenter. Let $M,N$ and $P{}$ be the projections of $I_A{}$ onto the lines $AC,BC{}$ and $AB{}$ respectively. Prove that if $\overrightarrow{I_AM}+\overrightarrow{I_AP}=\overrightarrow{I_AN}$ then $ABC{}$ is an equilateral triangle.
2010 Victor Vâlcovici, 3
$ A',B',C' $ are the feet of the heights of an acute-angled triangle $ ABC. $ Calculate
$$ \frac{\text{area} (ABC)}{\text{area}\left( A'B'C'\right)} , $$
knowing that $ ABC $ and $ A'B'C' $ have the same center of mass.
[i]Carmen[/i] and [i]Viorel Botea[/i]
2004 Nicolae Coculescu, 4
Let $ H $ denote the orthocenter of an acute triangle $ ABC, $ and $ A_1,A_2,A_3 $ denote the intersections of the altitudes of this triangle with its circumcircle, and $ A',B',C' $ denote the projections of the vertices of this triangle on their opposite sides.
[b]a)[/b] Prove that the sides of the triangle $ A'B'C' $ are parallel to the sides of $ A_1B_1C_1. $
[b]b)[/b] Show that $ B_1C_1\cdot\overrightarrow{HA_1} +C_1A_1\cdot\overrightarrow{HB_1} +A_1B_1\cdot\overrightarrow{HC_1} =0. $
[i]Geoghe Duță[/i]
2012 Gheorghe Vranceanu, 2
$ G $ is the centroid of $ ABC. $ The incircle of $ ABC $ touches $ BC,CA,AB $ at $ D,E,F, $ respectively. Show that $ ABC $ is equilateral if and only if $ BC\cdot\overrightarrow{GD}+ AC\cdot\overrightarrow{GE} +AB\cdot\overrightarrow{GF} =0. $
[i]Marian Ursărescu[/i]
VMEO I 2004, 4
In a quadrilateral $ABCD$ let $E$ be the intersection of the two diagonals, I the center of the parallelogram whose vertices are the midpoints of the four sides of the quadrilateral, and K the center of the parallelogram whose sides pass through the points. divide the four sides of the quadrilateral into three equal parts (see illustration ).
[img]https://cdn.artofproblemsolving.com/attachments/1/c/8f2617103edd8361b8deebbee13c6180fa848b.png[/img]
a) Prove that $\overrightarrow{EK} =\frac43 \overrightarrow{EI}$.
b) Prove that $$\lambda_A \overrightarrow{KA} +\lambda_B \overrightarrow{KB} + \lambda_C \overrightarrow{KC} + \lambda_D \overrightarrow{KD} = \overrightarrow{0}$$ , where
$$\lambda_A=1+\frac{S(ADB)}{S(ABCD)},\lambda_B=1+\frac{S(BCA)}{S(ABCD)},\lambda_C=1+\frac{S(CDB)}{S(ABCD)},\lambda_D=1+\frac{S(DAC)}{S(ABCD)}$$
, where $S$ is the area symbol.
2002 Spain Mathematical Olympiad, Problem 5
Consider $2002$ segments on a plane, such that their lengths are the same. Prove that there exists such a straight line $r$ such that the sum of the lengths of the projections of the $2002$ segments about $r$ is less than $\frac{2}{3}$.