This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 7

2024 ELMO Problems, 1

In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic. [i]Tiger Zhang[/i]

2024 ELMO Shortlist, G1

In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic. [i]Tiger Zhang[/i]

2024 ELMO Shortlist, G6

In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear. [i]Tiger Zhang[/i]

2024 ELMO Shortlist, G1

In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic. [i]Tiger Zhang[/i]

2024 ELMO Problems, 5

In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear. [i]Tiger Zhang[/i]

2022 USA TSTST, 1

Let $n$ be a positive integer. Find the smallest positive integer $k$ such that for any set $S$ of $n$ points in the interior of the unit square, there exists a set of $k$ rectangles such that the following hold: [list=disc] [*]The sides of each rectangle are parallel to the sides of the unit square. [*]Each point in $S$ is [i]not[/i] in the interior of any rectangle. [*]Each point in the interior of the unit square but [i]not[/i] in $S$ is in the interior of at least one of the $k$ rectangles [/list] (The interior of a polygon does not contain its boundary.) [i]Holden Mui[/i]

2024 ELMO Shortlist, G6

In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear. [i]Tiger Zhang[/i]