This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 117

2020 Dutch IMO TST, 2

Ward and Gabrielle are playing a game on a large sheet of paper. At the start of the game, there are $999$ ones on the sheet of paper. Ward and Gabrielle each take turns alternatingly, and Ward has the first turn. During their turn, a player must pick two numbers a and b on the sheet such that $gcd(a, b) = 1$, erase these numbers from the sheet, and write the number $a + b$ on the sheet. The first player who is not able to do so, loses. Determine which player can always win this game.

2019 Federal Competition For Advanced Students, P1, 3

Let $n\ge 2$ be an integer. Ariane and Bérénice play a game on the number of the residue classes modulo $n$. At the beginning there is the residue class $1$ on each piece of paper. It is the turn of the player whose turn it is to replace the current residue class $x$ with either $x + 1$ or by $2x$. The two players take turns, with Ariane starting. Ariane wins if the residue class $0$ is reached during the game. Bérénice wins if she can prevent that permanently. Depending on $n$, determine which of the two has a winning strategy.

2005 Cuba MO, 3

There are two piles of cards, one with $n$ cards and the other with $m$ cards. $A$ and $B$ play alternately, performing one of the following actions in each turn. following operations: a) Remove a card from a pile. b) Remove one card from each pile. c) Move a card from one pile to the other. Player $A$ always starts the game and whoever takes the last one letter wins . Determine if there is a winning strategy based on $m$ and $n$, so that one of the players following her can win always.

2022 Switzerland Team Selection Test, 8

Johann and Nicole are playing a game on the coordinate plane. First, Johann draws any polygon $\mathcal{S}$ and then Nicole can shift $\mathcal{S}$ to wherever she wants. Johann wins if there exists a point with coordinates $(x, y)$ in the interior of $\mathcal{S}$, where $x$ and $y$ are coprime integers. Otherwise, Nicole wins. Determine who has a winning strategy.

2011 NZMOC Camp Selection Problems, 3

Chris and Michael play a game on a board which is a rhombus of side length $n$ (a positive integer) consisting of two equilateral triangles, each of which has been divided into equilateral triangles of side length $ 1$. Each has a single token, initially on the leftmost and rightmost squares of the board, called the “home” squares (the illustration shows the case $n = 4$). [img]https://cdn.artofproblemsolving.com/attachments/e/b/8135203c22ce77c03c144850099ad1c575edb8.png[/img] A move consists of moving your token to an adjacent triangle (two triangles are adjacent only if they share a side). To win the game, you must either capture your opponent’s token (by moving to the triangle it occupies), or move on to your opponent’s home square. Supposing that Chris moves first, which, if any, player has a winning strategy?

2015 Swedish Mathematical Competition, 6

Axel and Berta play the following games: On a board are a number of positive integers. One move consists of a player exchanging a number $x$ on the board for two positive integers y and $z$ (not necessarily different), such that $y + z = x$. The game ends when the numbers on the board are relatively coprime in pairs. The player who made the last move has then lost the game. At the beginning of the game, only the number $2015$ is on the board. The two players make do their moves in turn and Berta begins. One of the players has a winning strategy. Who, and why?

2008 Dutch IMO TST, 2

Julian and Johan are playing a game with an even number of cards, say $2n$ cards, ($n \in Z_{>0}$). Every card is marked with a positive integer. The cards are shuffled and are arranged in a row, in such a way that the numbers are visible. The two players take turns picking cards. During a turn, a player can pick either the rightmost or the leftmost card. Johan is the first player to pick a card (meaning Julian will have to take the last card). Now, a player’s score is the sum of the numbers on the cards that player acquired during the game. Prove that Johan can always get a score that is at least as high as Julian’s.

2024 Baltic Way, 8

Let $a$, $b$, $n$ be positive integers such that $a + b \leq n^2$. Alice and Bob play a game on an (initially uncoloured) $n\times n$ grid as follows: - First, Alice paints $a$ cells green. - Then, Bob paints $b$ other (i.e.uncoloured) cells blue. Alice wins if she can find a path of non-blue cells starting with the bottom left cell and ending with the top right cell (where a path is a sequence of cells such that any two consecutive ones have a common side), otherwise Bob wins. Determine, in terms of $a$, $b$ and $n$, who has a winning strategy.

May Olympiad L2 - geometry, 2016.5

Rosa and Sara play with a triangle $ABC$, right at $B$. Rosa begins by marking two interior points of the hypotenuse $AC$, then Sara marks an interior point of the hypotenuse $AC$ different from those of Rosa. Then, from these three points the perpendiculars to the sides $AB$ and $BC$ are drawn, forming the following figure. [img]https://cdn.artofproblemsolving.com/attachments/9/9/c964bbacc4a5960bee170865cc43902410e504.png[/img] Sara wins if the area of the shaded surface is equal to the area of the unshaded surface, in other case wins Rosa. Determine who of the two has a winning strategy.

1996 Estonia National Olympiad, 5

John and Mary play the following game. First they choose integers $n > m > 0$ and put $n$ sweets on an empty table. Then they start to make moves alternately. A move consists of choosing a nonnegative integer $k\le m$ and taking $k$ sweets away from the table (if $k = 0$ , nothing happens in fact). In doing so no value for $k$ can be chosen more than once (by none of the players) or can be greater than the number of sweets at the table at the moment of choice. The game is over when one of the players can make no more moves. John and Mary decided that at the beginning Mary chooses the numbers $m$ and $n$ and then John determines whether the performer of the last move wins or looses. Can Mary choose $m$ and $n$ in such way that independently of John’s decision she will be able to win?

1997 Dutch Mathematical Olympiad, 3

a. View the second-degree quadratic equation $x^2+? x +? = 0$ Two players successively put an integer each at the location of a question mark. Show that the second player can always ensure that the quadratic gets two integer solutions. Note: we say that the quadratic also has two integer solutions, even when they are equal (for example if they are both equal to $3$). b.View the third-degree equation $x^3 +? x^2 +? x +? = 0$ Three players successively put an integer each at the location of a question mark. The equation appears to have three integer (possibly again the same) solutions. It is given that two players each put a $3$ in the place of a question mark. What number did the third player put? Determine that number and the place where it is placed and prove that only one number is possible.

1998 German National Olympiad, 2

Two pupils $A$ and $B$ play the following game. They begin with a pile of $1998$ matches and $A$ plays first. A player who is on turn must take a nonzero square number of matches from the pile. The winner is the one who makes the last move. Decide who has the winning strategy and give one such strategy.

2008 Dutch IMO TST, 2

Julian and Johan are playing a game with an even number of cards, say $2n$ cards, ($n \in Z_{>0}$). Every card is marked with a positive integer. The cards are shuffled and are arranged in a row, in such a way that the numbers are visible. The two players take turns picking cards. During a turn, a player can pick either the rightmost or the leftmost card. Johan is the first player to pick a card (meaning Julian will have to take the last card). Now, a player’s score is the sum of the numbers on the cards that player acquired during the game. Prove that Johan can always get a score that is at least as high as Julian’s.

2022 Rioplatense Mathematical Olympiad, 5

Let $n \ge 4$ and $k$ be positive integers. We consider $n$ lines in the plane between which there are not two parallel nor three concurrent. In each of the $\frac{n(n-1)}{2}$ points of intersection of these lines, $k$ coins are placed. Ana and Beto play the following game in turns: each player, in turn, chooses one of those points that does not share one of the $n$ lines with the point chosen immediately before by the other player, and removes a coin from that point. Ana starts and can choose any point. The player who cannot make his move loses. Determine based on $n$ and $k$ who has a winning strategy.

2008 Denmark MO - Mohr Contest, 3

The numbers from $1$ to $500$ are written on the board. Two players $A$ and $B$ erase alternately one number at a time, and $A$ deletes the first number. If the sum of the last two number on the board is divisible by $3$, $B$ wins, otherwise $A$ wins. Which player can lay out a strategy that ensures this player's victory?

2020 Dutch IMO TST, 2

Ward and Gabrielle are playing a game on a large sheet of paper. At the start of the game, there are $999$ ones on the sheet of paper. Ward and Gabrielle each take turns alternatingly, and Ward has the first turn. During their turn, a player must pick two numbers a and b on the sheet such that $gcd(a, b) = 1$, erase these numbers from the sheet, and write the number $a + b$ on the sheet. The first player who is not able to do so, loses. Determine which player can always win this game.

2017 Finnish National High School Mathematics Comp, 4

Let $m$ be a positive integer. Two players, Axel and Elina play the game HAUKKU ($m$) proceeds as follows: Axel starts and the players choose integers alternately. Initially, the set of integers is the set of positive divisors of a positive integer $m$ .The player in turn chooses one of the remaining numbers, and removes that number and all of its multiples from the list of selectable numbers. A player who has to choose number $1$, loses. Show that the beginner player, Axel, has a winning strategy in the HAUKKU ($m$) game for all $m \in Z_{+}$. PS. As member Loppukilpailija noted, it should be written $m>1$, as the statement does not hold for $m = 1$.

2015 Auckland Mathematical Olympiad, 2

On the table there are $2016$ coins. Two players play the following game making alternating moves. In one move it is allowed to take $1, 2$ or $3$ coins. The player who takes the last coin wins. Which player has a winning strategy?

2017 Auckland Mathematical Olympiad, 4

There are $11$ empty boxes and a pile of stones. Two players play the following game by alternating moves: In one move a player takes $10$ stones from the pile and places them into boxes, taking care to place no more than one stone in any box. The winner is the player after whose move there appear $21$ stones in one of the boxes for the first time. If a player wants to guarantee that they win the game, should they go first or second? Explain your reasoning.

2021 Czech and Slovak Olympiad III A, 1

A fraction with $1010$ squares in the numerator and $1011$ squares in the denominator serves as a game board for a two player game. $$\frac{\square + \square +...+ \square}{\square + \square +...+ \square+ \square}$$ Players take turns in moves. In each turn, the player chooses one of the numbers $1, 2,. . . , 2021$ and inserts it in any empty field. Each number can only be used once. The starting player wins if the value of the fraction after all the fields is filled differs from number $1$ by less than $10^{-6}$. Otherwise, the other player wins. Decide which of the players has a winning strategy. (Pavel Šalom)

2005 Chile National Olympiad, 6

A box contains $100$ tickets. Each ticket has a real number written on it. There are no restrictions on the type of number except that they are all different (they can be integers, rational, positive, negative, irrational, large or small). Of course there is one ticket that has the highest number and that is the winner. The game consists of drawing a ticket at random, looking at it and deciding whether to keep it or not. If we choose to keep him, it is verified if he was the oldest, in which case we win a million pesos (if we don't win, the game is over). If we don't think it's the biggest, we can discard it and draw another one, repeating the process until we like one or we run out of tickets. Going back to choose a previously discarded ticket is prohibited. Find a game strategy that gives at least a $25\%$ chance of winning.

2011 Swedish Mathematical Competition, 5

Arne and Bertil play a game on an $11 \times 11$ grid. Arne starts. He has a game piece that is placed on the center od the grid at the beginning of the game. At each move he moves the piece one step horizontally or vertically. Bertil places a wall along each move any of an optional four squares. Arne is not allowed to move his piece through a wall. Arne wins if he manages to move the pice out of the board, while Bertil wins if he manages to prevent Arne from doing that. Who wins if from the beginning there are no walls on the game board and both players play optimally?

2015 Argentina National Olympiad, 6

Let $S$ the set of natural numbers from $1$ up to $1001$ , $S=\{1,2,...,1001\}$. Lisandro thinks of a number $N$ of $S$ , and Carla has to find out that number with the following procedure. She gives Lisandro a list of subsets of $S$, Lisandro reads it and tells Carla how many subsets of her list contain $N$ . If Carla wishes, she can repeat the same thing with a second list, and then with a third, but no more than $3$ are allowed. What is the smallest total number of subsets that allow Carla to find $N$ for sure?

2018 Regional Olympiad of Mexico Southeast, 1

Lalo and Sergio play in a regular polygon of $n\geq 4$ sides. In his turn, Lalo paints a diagonal or side of pink, and in his turn Sergio paint a diagonal or side of orange. Wins the game who achieve paint the three sides of a triangle with his color, if none of the players can win, they game tie. Lalo starts playing. Determines all natural numbers $n$ such that one of the players have winning strategy.

2018 Istmo Centroamericano MO, 2

Let $n> 1$ be an odd integer. On a square surface have been placed $n^2 - 1$ white slabs and a black slab on the center. Two workers $A$ and $B$ take turns removing them, betting that whoever removes black will lose. First $A$ picks a slab; if it has row number $i \ge (n + 1) / 2$, then it will remove all tiles from rows with number greater than or equal to$ i$, while if $i <(n + 1) / 2$, then it will remove all tiles from the rows with lesser number or equal to $i$. Proceed in a similar way with columns. Then $B$ chooses one of the remaining tiles and repeats the process. Determine who has a winning strategy and describe it. Note: Row and column numbering is ascending from top to bottom and from left to right.