This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 296

1997 Estonia National Olympiad, 5

There are six small circles in the figure with a radius of $1$ and tangent to a large circle and the sides of the $ABC$ of an equilateral triangle, where touch points are $K, L$ and $M$ respectively with the midpoints of sides $AB, BC$ and $AC$. Find the radius of the large circle and the side of the triangle $ABC$. [img]https://cdn.artofproblemsolving.com/attachments/3/0/f858dcc5840759993ea2722fd9b9b15c18f491.png[/img]

Denmark (Mohr) - geometry, 2010.5

An equilateral triangle $ABC$ is given. With $BC$ as diameter, a semicircle is drawn outside the triangle. On the semicircle, points $D$ and $E$ are chosen such that the arc lengths $BD, DE$ and $EC$ are equal. Prove that the line segments $AD$ and $AE$ divide the side $BC$ into three equal parts. [img]https://1.bp.blogspot.com/-hQQV-Of96Ls/XzXCZjCledI/AAAAAAAAMV0/SwXa4mtEEm04onYbFGZiTc5NSpkoyvJLwCLcBGAsYHQ/s0/2010%2BMohr%2Bp5.png[/img]

1971 Czech and Slovak Olympiad III A, 5

Let $ABC$ be a given triangle. Find the locus $\mathbf M$ of all vertices $Z$ such that triangle $XYZ$ is equilateral where $X$ is any point of segment $AB$ and $Y\neq X$ lies on ray $AC.$

OIFMAT I 2010, 2

In an acute angle $ \vartriangle ABC $, let $ AD, BE, CF $ be their altitudes (with $ D, E, F $ lying on $ BC, CA, AB $, respectively). Let's call $ O, H $ the circumcenter and orthocenter of $ \vartriangle ABC $, respectively. Let $ P = CF \cap AO $. Suppose the following two conditions are true: $\bullet$ $ FP = EH $ $\bullet$ There is a circle that passes through points $ A, O, H, C $ Prove that the $ \vartriangle ABC $ is equilateral.

Novosibirsk Oral Geo Oly IX, 2022.6

Triangle $ABC$ is given. On its sides $AB$, $BC$ and $CA$, respectively, points $X, Y, Z$ are chosen so that $$AX : XB =BY : YC = CZ : ZA = 2:1.$$ It turned out that the triangle $XYZ$ is equilateral. Prove that the original triangle $ABC$ is also equilateral.

II Soros Olympiad 1995 - 96 (Russia), 9.6

There is a point inside a regular triangle located at distances $5$, $6$ and $7$ from its vertices. Find the area of this regular triangle.

1974 Spain Mathematical Olympiad, 4

All three sides of an equilateral triangle are assumed to be reflective (except in the vertices), in such a way that they reflect the rays of light located in their plane, that fall on them and that come out of an interior point of the triangle. Determine the path of a ray of light that, starting from a vertex of the triangle reach another vertex of the same after reflecting successively on the three sides. Calculate the length of the path followed by the light assuming that the side of the triangle measures $1$ m.

2019 BAMO, E/3

In triangle $\vartriangle ABC$, we have marked points $A_1$ on side $BC, B_1$ on side $AC$, and $C_1$ on side $AB$ so that $AA_1$ is an altitude, $BB_1$ is a median, and $CC_1$ is an angle bisector. It is known that $\vartriangle A_1B_1C_1$ is equilateral. Prove that $\vartriangle ABC$ is equilateral too. (Note: A median connects a vertex of a triangle with the midpoint of the opposite side. Thus, for median $BB_1$ we know that $B_1$ is the midpoint of side $AC$ in $\vartriangle ABC$.)

2001 All-Russian Olympiad Regional Round, 9.4

The target is a triangle divided by three families of parallel lines into $100$ equal regular triangles with single sides. A sniper shoots at a target. He aims at triangle and hits either it or one of the sides adjacent to it. He sees the results of his shooting and can choose when stop shooting. What is the greatest number of triangles he can with a guarantee of hitting five times?

1976 All Soviet Union Mathematical Olympiad, 230

Let us call "[i]big[/i]" a triangle with all sides longer than $1$. Given a equilateral triangle with all the sides equal to $5$. Prove that: a) You can cut $100$ [i]big [/i] triangles out of given one. b) You can divide the given triangle onto $100$ [i]big [/i] nonintersecting ones fully covering the initial one. c) The same as b), but the triangles either do not have common points, or have one common side, or one common vertex. d) The same as c), but the initial triangle has the side $3$.

Swiss NMO - geometry, 2006.2

Let $ABC$ be an equilateral triangle and let $D$ be an inner point of the side $BC$. A circle is tangent to $BC$ at $D$ and intersects the sides $AB$ and $AC$ in the inner points $M, N$ and $P, Q$ respectively. Prove that $|BD| + |AM| + |AN| = |CD| + |AP| + |AQ|$.

1991 Swedish Mathematical Competition, 6

Given any triangle, show that we can always pick a point on each side so that the three points form an equilateral triangle with area at most one quarter of the original triangle.

Estonia Open Junior - geometry, 2019.2.1

A pentagon can be divided into equilateral triangles. Find all the possibilities that the sizes of the angles of this pentagon can be.

Kyiv City MO 1984-93 - geometry, 1985.9.5

Outside the parallelogram $ABCD$ on its sides $AB$ and $BC$ are constructed equilateral triangles $ABK$, and $BCM$. Prove that the triangle $KMD$ is equilateral.

2012 Denmark MO - Mohr Contest, 5

In the hexagon $ABCDEF$, all angles are equally large. The side lengths satisfy $AB = CD = EF = 3$ and $BC = DE = F A = 2$. The diagonals $AD$ and $CF$ intersect each other in the point $G$. The point $H$ lies on the side $CD$ so that $DH = 1$. Prove that triangle $EGH$ is equilateral.

2010 Junior Balkan Team Selection Tests - Romania, 1

Consider two equilateral triangles $ABC$ and $MNP$ with the property that $AB \parallel MN, BC \parallel NP$ and $CA \parallel PM$ , so that the surfaces of the triangles intersect after a convex hexagon. The distances between the three pairs of parallel lines are at most equal to $1$. Show that at least one of the two triangles has the side at most equal to $\sqrt {3}$ .

2002 Junior Balkan Team Selection Tests - Romania, 3

A given equilateral triangle of side $10$ is divided into $100$ equilateral triangles of side $1$ by drawing parallel lines to the sides of the original triangle. Find the number of equilateral triangles, having vertices in the intersection points of parallel lines whose sides lie on the parallel lines.

1981 Czech and Slovak Olympiad III A, 3

Let $ABCD$ be a unit square. Consider an equilateral triangle $XYZ$ with $X,Y$ as (inner or boundary) points of the square. Determine the locus $M$ of vertices $Z$ of all these triangles $XYZ$ and compute the area of $M.$

2012 Czech-Polish-Slovak Junior Match, 3

Different points $A, B, C, D$ lie on a circle with a center at the point $O$ at such way that $\angle AOB$ $= \angle BOC =$ $\angle COD =$ $60^o$. Point $P$ lies on the shorter arc $BC$ of this circle. Points $K, L, M$ are projections of $P$ on lines $AO, BO, CO$ respectively . Show that (a) the triangle $KLM$ is equilateral, (b) the area of triangle $KLM$ does not depend on the choice of the position of point $P$ on the shorter arc $BC$

1991 Poland - Second Round, 2

On the sides $ BC $, $ CA $, $ AB $ of the triangle $ ABC $, the points $ D $, $ E $, $ F $ are chosen respectively, such that $$ \frac{|DB|}{|DC|} = \frac{|EC|}{|EA|} = \frac{|FA|}{|FB|}$$ Prove that if the triangle $ DEF $ is equilateral, then the triangle $ ABC $ is also equilateral.

2001 Kazakhstan National Olympiad, 6

Each interior point of an equilateral triangle with sides equal to $1$ lies in one of six circles of the same radius $ r $. Prove that $ r \geq \frac {{\sqrt 3}} {{10}} $.

2022 Novosibirsk Oral Olympiad in Geometry, 6

Triangle $ABC$ is given. On its sides $AB$, $BC$ and $CA$, respectively, points $X, Y, Z$ are chosen so that $$AX : XB =BY : YC = CZ : ZA = 2:1.$$ It turned out that the triangle $XYZ$ is equilateral. Prove that the original triangle $ABC$ is also equilateral.

1955 Polish MO Finals, 3

An equilateral triangle $ ABC $ is inscribed in a circle; prove that if $ M $ is any point of the circle, then one of the distances $ MA $, $ MB $, $ MC $ is equal to the sum of the other two.

1959 Polish MO Finals, 2

In an equilateral triangle $ ABC $, point $ O $ is chosen and perpendiculars $ OM $, $ ON $, $ OP $ are dropped to the sides $ BC $, $ CA $, $ AB $, respectively. Prove that the sum of the segments $ AP $, $ BM $, $ CN $ does not depend on the position of point $ O $.

2003 All-Russian Olympiad Regional Round, 9.1

Prove that the sides of any equilateral triangle you can either increase everything or decrease everything by the same amount so that you get a right triangle.