This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 296

2009 Greece Junior Math Olympiad, 2

From vertex $A$ of an equilateral triangle $ABC$, a ray $Ax$ intersects $BC$ at point $D$. Let $E$ be a point on $Ax$ such that $BA =BE$. Calculate $\angle AEC$.

2008 Grigore Moisil Intercounty, 3

Let $ A_1,B_1,C_1 $ be points on the sides (excluding their endpoints) $ BC,CA,AB, $ respectively, of a triangle $ ABC, $ such that $ \angle A_1AB =\angle B_1BC=\angle C_1CA. $ Let $ A^* $ be the intersection of $ BB_1 $ with $ CC_1,B^* $ be the intersection of $ CC_1 $ with $ AA_1, $ and $ C^* $ be the intersection of $ AA_1 $ with $ BB_1. $ Denote with $ r_A,r_B,r_C $ the inradii of $ A^*BC,AB^*C,ABC^*, $ respectively. Prove that $$ \frac{r_A}{BC}=\frac{r_B}{CA}=\frac{r_C}{AB} $$ if and only if $ ABC $ is equilateral. [i]Daniel Văcărețu[/i]

1996 Tournament Of Towns, (505) 2

For what positive integers $n$ is it possible to tile an equilateral triangle of side $n$ with trapezoids each of which has sides $1, 1, 1, 2$? (NB Vassiliev)

1973 Chisinau City MO, 68

Inside the triangle $ABC$, point $O$ was chosen so that the triangles $AOB, BOC, COA$ turned out to be similar. Prove that triangle $ABC$ is equilateral.

1975 Dutch Mathematical Olympiad, 4

Given is a rectangular plane coordinate system. (a) Prove that it is impossible to find an equilateral triangle whose vertices have integer coordinates. (b) In the plane the vertices $A, B$ and $C$ lie with integer coordinates in such a way that $AB = AC$. Prove that $\frac{d(A,BC)}{BC}$ is rational.

2003 Cuba MO, 3

Let $ABC$ be an acute triangle and $T$ be a point interior to this triangle. that $\angle ATB = \angle BTC = \angle CTA$. Let $M,N$ and $P$ be the feet of the perpendiculars from $T$ to $BC$, $CA$ and $AB$ respectively. Prove that if the circle circumscribed around $\vartriangle MNP$ cuts again the sides $ BC$, $CA$ and $AB$ in $M_1$, $N_1$, $P_1$ respectively, then the $\vartriangle M_1N_1P_1$ It is equilateral.

2012 Tournament of Towns, 4

Given a triangle $ABC$. Suppose I is its incentre, and $X, Y, Z$ are the incentres of triangles $AIB, BIC$ and $AIC$ respectively. The incentre of triangle $XYZ$ coincides with $I$. Is it necessarily true that triangle $ABC$ is regular?

1990 All Soviet Union Mathematical Olympiad, 518

An equilateral triangle of side $n$ is divided into $n^2$ equilateral triangles of side $1$. A path is drawn along the sides of the triangles which passes through each vertex just once. Prove that the path makes an acute angle at at least $n$ vertices.

Geometry Mathley 2011-12, 2.1

Let $ABC$ be an equilateral triangle with circumcircle of center $O$ and radius $R$. Point $M$ is exterior to the triangle such that $S_bS_c = S_aS_b+S_aS_c$, where $S_a, S_b, S_c$ are the areas of triangles $MBC,MCA,MAB$ respectively. Prove that $OM \ge R$. Nguyễn Tiến Lâm

2023 Regional Olympiad of Mexico West, 5

We have a rhombus $ABCD$ with $\angle BAD=60^\circ$. We take points $F,H,G$ on the sides $AD,DC$ and the diagonal $AC$, respectively, such that $DFGH$ is a parallelogram. Prove that $BFH$ is equilateral.

2004 All-Russian Olympiad Regional Round, 8.3

In an acute triangle, the distance from the midpoint of any side to the opposite vertex is equal to the sum of the distances from it to sides of the triangle. Prove that this triangle is equilateral.

2017 Azerbaijan EGMO TST, 1

Given an equilateral triangle $ABC$ and a point $P$ so that the distances $P$ to $A$ and to $C$ are not farther than the distances $P$ to $B$. Prove that $PB = PA + PC$ if and only if $P$ lies on the circumcircle of $\vartriangle ABC$.

2020 Yasinsky Geometry Olympiad, 1

In the rectangle $ABCD$, $AB = 2BC$. An equilateral triangle $ABE$ is constructed on the side $AB$ of the rectangle so that its sides $AE$ and $BE$ intersect the segment $CD$. Point $M$ is the midpoint of $BE$. Find the $\angle MCD$.

2004 Junior Balkan Team Selection Tests - Romania, 2

Let $M,N, P$ be the midpoints of the sides $BC,CA,AB$ of the triangle $ABC$, respectively, and let $G$ be the centroid of the triangle. Prove that if $BMGP$ is cyclic and $2BN = \sqrt3 AB$ , then triangle $ABC$ is equilateral.

1999 Bundeswettbewerb Mathematik, 3

In the plane are given a segment $AC$ and a point $B$ on the segment. Let us draw the positively oriented isosceles triangles $ABS_1, BCS_2$, and $CAS_3$ with the angles at $S_1,S_2,S_3$ equal to $120^o$. Prove that the triangle $S_1S_2S_3$ is equilateral.

2017 BMT Spring, 15

In triangle $ABC$, the angle at $C$ is $30^o$, side $BC$ has length $4$, and side $AC$ has length $5$. Let $ P$ be the point such that triangle $ABP$ is equilateral and non-overlapping with triangle $ABC$. Find the distance from $C$ to $ P$.

2023 Chile National Olympiad, 3

Let $\vartriangle ABC$ be an equilateral triangle with side $1$. $1011$ points $P_1$, $P_2$, $P_3$, $...$, $P_{1011}$ on the side $AC$ and $1011$ points $Q_1$, $Q_2$, $Q_3$, $...$ ,$ Q_{1011}$ on side AB (see figure) in such a way as to generate $2023$ triangles of equal area. Find the length of the segment $AP_{1011}$. [img]https://cdn.artofproblemsolving.com/attachments/f/6/fea495c16a0b626e0c3882df66d66011a1a3af.png[/img] PS. Harder version of [url=https://artofproblemsolving.com/community/c4h3323135p30741470]2023 Chile NMO L1 P3[/url]

2005 Sharygin Geometry Olympiad, 7

Two circles with radii $1$ and $2$ have a common center at the point $O$. The vertex $A$ of the regular triangle $ABC$ lies on the larger circle, and the middpoint of the base $CD$ lies on the smaller one. What can the angle $BOC$ be equal to?

2019 BAMO, E/3

In triangle $\vartriangle ABC$, we have marked points $A_1$ on side $BC, B_1$ on side $AC$, and $C_1$ on side $AB$ so that $AA_1$ is an altitude, $BB_1$ is a median, and $CC_1$ is an angle bisector. It is known that $\vartriangle A_1B_1C_1$ is equilateral. Prove that $\vartriangle ABC$ is equilateral too. (Note: A median connects a vertex of a triangle with the midpoint of the opposite side. Thus, for median $BB_1$ we know that $B_1$ is the midpoint of side $AC$ in $\vartriangle ABC$.)

1990 Greece National Olympiad, 3

In a triangle $ABC$ with medians $AD$ and $BE$ , holds that $\angle CAD= \angle CBE=30^o$. Prove that triangle $ABC$ is equilateral.

III Soros Olympiad 1996 - 97 (Russia), 9.7

Find the side of the smallest regular triangle that can be inscribed in a right triangle with an acute angle of $30^o$ and a hypotenuse of $2$. (All vertices of the required regular triangle must be located on different sides of this right triangle.)

1995 Bulgaria National Olympiad, 4

Points $A_1,B_1,C_1$ are selected on the sides $BC$,$CA$,$AB$ respectively of an equilateral triangle $ABC$ in such a way that the inradii of the triangles $C_1AB_1$, $A_1BC_1$, $B_1CA_1$ and $A_1B_1C_1$ are equal. Prove that $A_1,B_1,C_1$ are the midpoints of the corresponding sides.

1955 Polish MO Finals, 3

An equilateral triangle $ ABC $ is inscribed in a circle; prove that if $ M $ is any point of the circle, then one of the distances $ MA $, $ MB $, $ MC $ is equal to the sum of the other two.

1961 Czech and Slovak Olympiad III A, 4

Consider a unit square $ABCD$ and a (variable) equilateral triangle $XYZ$ such that $X, Z$ lie on rays $AB, DC,$ respectively, and $Y$ lies on segment $AD$. Compute the area of triangle $XYZ$ in terms of $x=AX$ and determine its maximum and minimum.

2016 NZMOC Camp Selection Problems, 3

Points $A, B, C$ are vertices of an equilateral triangle inscribed in a circle. Point $D$ lies on the shorter arc $\overarc {AB}$ . Prove that $AD + BD = DC$.