Found problems: 85335
2004 Nordic, 3
Given a finite sequence $x_{1,1}, x_{2,1}, \dots , x_{n,1}$ of integers $(n\ge 2)$, not all equal, define the sequences $x_{1,k}, \dots , x_{n,k}$ by
\[ x_{i,k+1}=\frac{1}{2}(x_{i,k}+x_{i+1,k})\quad\text{where }x_{n+1,k}=x_{1,k}.\]
Show that if $n$ is odd, then not all $x_{j,k}$ are integers. Is this also true for even $n$?
1967 IMO Longlists, 24
In a sports meeting a total of $m$ medals were awarded over $n$ days. On the first day one medal and $\frac{1}{7}$ of the remaining medals were awarded. On the second day two medals and $\frac{1}{7}$ of the remaining medals were awarded, and so on. On the last day, the remaining $n$ medals were awarded. How many medals did the meeting last, and what was the total number of medals ?
2020 Purple Comet Problems, 16
Find the number of permutations of the letters $ABCDE$ where the letters $A$ and $B$ are not adjacent and the letters $C$ and $D$ are not adjacent. For example, count the permutations $ACBDE$ and $DEBCA$ but not $ABCED$ or $EDCBA$.
1983 IMO Longlists, 64
The sum of all the face angles about all of the vertices except one of a given polyhedron is $5160$. Find the sum of all of the face angles of the polyhedron.
1974 Yugoslav Team Selection Test, Problem 3
Let $S$ be a set of $n$ points $P_1,P_2,\ldots,P_n$ in a plane such that no three of the
points are collinear. Let $\alpha$ be the smallest of the angles $\angle P_iP_jP_k$ ($i\ne j\ne k\ne i,i,j,k\in\{1,2,\ldots,n\}$). Find $\max_S\alpha$ and determine those sets $S$ for which this maximal value is attained.
2014 JBMO Shortlist, 9
Let $n$ a positive integer and let $x_1, \ldots, x_n, y_1, \ldots, y_n$ real positive numbers such that $x_1+\ldots+x_n=y_1+\ldots+y_n=1$. Prove that:
$$|x_1-y_1|+\ldots+|x_n-y_n|\leq 2-\underset{1\leq i\leq n}{min} \;\dfrac{x_i}{y_i}-\underset{1\leq i\leq n}{min} \;\dfrac{y_i}{x_i}$$
2006 Romania Team Selection Test, 2
Let $p$ a prime number, $p\geq 5$. Find the number of polynomials of the form
\[ x^p + px^k + p x^l + 1, \quad k > l, \quad k, l \in \left\{1,2,\dots,p-1\right\}, \] which are irreducible in $\mathbb{Z}[X]$.
[i]Valentin Vornicu[/i]
2008 Saint Petersburg Mathematical Olympiad, 4
The numbers $x_1,...x_{100}$ are written on a board so that $ x_1=\frac{1}{2}$ and for every $n$ from $1$ to $99$, $x_{n+1}=1-x_1x_2x_3*...*x_{100}$. Prove that $x_{100}>0.99$.
2009 Tournament Of Towns, 7
At the entrance to a cave is a rotating round table. On top of the table are $n$ identical barrels, evenly spaced along its circumference. Inside each barrel is a herring either with its head up or its head down. In a move, Ali Baba chooses from $1$ to $n$ of the barrels and turns them upside down. Then the table spins around. When it stops, it is impossible to tell which barrels have been turned over. The cave will open if the heads of the herrings in all $n$ barrels are up or are all down. Determine all values of $n$ for which Ali Baba can open the cave in a finite number of moves.
[i](11 points)[/i]
2023 Germany Team Selection Test, 2
Let $ABCD$ be a cyclic quadrilateral. Assume that the points $Q, A, B, P$ are collinear in this order, in such a way that the line $AC$ is tangent to the circle $ADQ$, and the line $BD$ is tangent to the circle $BCP$. Let $M$ and $N$ be the midpoints of segments $BC$ and $AD$, respectively. Prove that the following three lines are concurrent: line $CD$, the tangent of circle $ANQ$ at point $A$, and the tangent to circle $BMP$ at point $B$.
2016 Poland - Second Round, 6
$n$ ($n \ge 4$) green points are in a data space and no $4$ green points lie on one plane. Some segments which connect green points have been colored red. Number of red segments is even. Each two green points are connected with polyline which is build from red segments. Show that red segments can be split on pairs, such that segments from one pair have common end.
2017 China Team Selection Test, 4
Given a circle with radius 1 and 2 points C, D given on it. Given a constant l with $0<l\le 2$. Moving chord of the circle AB=l and ABCD is a non-degenerated convex quadrilateral. AC and BD intersects at P. Find the loci of the circumcenters of triangles ABP and BCP.
1975 IMO Shortlist, 12
Consider on the first quadrant of the trigonometric circle the arcs $AM_1 = x_1,AM_2 = x_2,AM_3 = x_3, \ldots , AM_v = x_v$ , such that $x_1 < x_2 < x_3 < \cdots < x_v$. Prove that
\[\sum_{i=0}^{v-1} \sin 2x_i - \sum_{i=0}^{v-1} \sin (x_i- x_{i+1}) < \frac{\pi}{2} + \sum_{i=0}^{v-1} \sin (x_i + x_{i+1})\]
Kvant 2020, M2596
The circle $\omega{}$ is inscribed in the quadrilateral $ABCD$. Prove that the diameter of the circle $\omega{}$ does not exceed the length of the segment connecting the midpoints of the sides $BC$ and $AD$.
[i]Proposed by O. Yuzhakov[/i]
2002 National Olympiad First Round, 28
How many positive roots does polynomial $x^{2002} + a_{2001}x^{2001} + a_{2000}x^{2000} + \cdots + a_1x + a_0$ have such that $a_{2001} = 2002$ and $a_k = -k - 1$ for $0\leq k \leq 2000$?
$
\textbf{a)}\ 0
\qquad\textbf{b)}\ 1
\qquad\textbf{c)}\ 2
\qquad\textbf{d)}\ 1001
\qquad\textbf{e)}\ 2002
$
2000 China National Olympiad, 3
A test contains $5$ multiple choice questions which have $4$ options in each. Suppose each examinee chose one option for each question. There exists a number $n$, such that for any $n$ sheets among $2000$ sheets of answer papers, there are $4$ sheets of answer papers such that any two of them have at most $3$ questions with the same answers. Find the minimum value of $n$.
2015 AMC 12/AHSME, 1
What is the value of $2-(-2)^{-2}$?
$ \textbf{(A) } -2
\qquad\textbf{(B) } \dfrac{1}{16}
\qquad\textbf{(C) } \dfrac{7}{4}
\qquad\textbf{(D) } \dfrac{9}{4}
\qquad\textbf{(E) } 6
$
1955 Moscow Mathematical Olympiad, 304
The centers $O_1, O_2$ and $O_3$ of circles exscribed about $\vartriangle ABC$ are connected. Prove that $O_1O_2O_3$ is an acute-angled one.
2019 Romanian Master of Mathematics, 1
Amy and Bob play the game. At the beginning, Amy writes down a positive integer on the board. Then the players take moves in turn, Bob moves first. On any move of his, Bob replaces the number $n$ on the blackboard with a number of the form $n-a^2$, where $a$ is a positive integer. On any move of hers, Amy replaces the number $n$ on the blackboard with a number of the form $n^k$, where $k$ is a positive integer. Bob wins if the number on the board becomes zero.
Can Amy prevent Bob’s win?
[i]Maxim Didin, Russia[/i]
2011 Tuymaada Olympiad, 3
In a convex hexagon $AC'BA'CB'$, every two opposite sides are equal. Let $A_1$ denote the point of intersection of $BC$ with the perpendicular bisector of $AA'$. Define $B_1$ and $C_1$ similarly. Prove that $A_1$, $B_1$, and $C_1$ are collinear.
2015 Thailand TSTST, 1
Let $a,b,c$ be a real numbers such that this equations:
$a^2x + b^2y + c^2z = 1$
$xy + yz + xz = 1$
have only one solution $(x, y, z)$ in real numbers. Prove that $a, b, c$ are sides of the triangle
2012 Princeton University Math Competition, A5 / B7
$5$ people stand in a line facing one direction. In every round, the person at the front moves randomly to any position in the line, including the front or the end. Suppose that $\frac{m}{n}$ is the expected number of rounds needed for the last person of the initial line to appear at the front of the line, where $m$ and $n$ are relatively prime positive integers. What is $m + n$?
2005 Hungary-Israel Binational, 2
Let $f$ be an increasing mapping from the family of subsets of a given finite set $H$ into itself, i.e. such that for every $X \subseteq Y\subseteq H$ we have $f (X )\subseteq f (Y )\subseteq H .$ Prove that there exists a subset $H_{0}$ of $H$ such that $f (H_{0}) = H_{0}.$
EMCC Guts Rounds, 2013
[u]Round 1[/u]
[b]p1.[/b] Five girls and three boys are sitting in a room. Suppose that four of the children live in California. Determine the maximum possible number of girls that could live somewhere outside California.
[b]p2.[/b] A $4$-meter long stick is rotated $60^o$ about a point on the stick $1$ meter away from one of its ends. Compute the positive difference between the distances traveled by the two endpoints of the stick, in meters.
[b]p3.[/b] Let $f(x) = 2x(x - 1)^2 + x^3(x - 2)^2 + 10(x - 1)^3(x - 2)$. Compute $f(0) + f(1) + f(2)$.
[u]Round 2[/u]
[b]p4.[/b] Twenty boxes with weights $10, 20, 30, ... , 200$ pounds are given. One hand is needed to lift a box for every $10$ pounds it weighs. For example, a $40$ pound box needs four hands to be lifted. Determine the number of people needed to lift all the boxes simultaneously, given that no person can help lift more than one box at a time.
[b]p5.[/b] Let $ABC$ be a right triangle with a right angle at $A$, and let $D$ be the foot of the perpendicular from vertex$ A$ to side $BC$. If $AB = 5$ and $BC = 7$, compute the length of segment $AD$.
[b]p6.[/b] There are two circular ant holes in the coordinate plane. One has center $(0, 0)$ and radius $3$, and the other has center $(20, 21)$ and radius $5$. Albert wants to cover both of them completely with a circular bowl. Determine the minimum possible radius of the circular bowl.
[u]Round 3[/u]
[b]p7.[/b] A line of slope $-4$ forms a right triangle with the positive x and y axes. If the area of the triangle is 2013, find the square of the length of the hypotenuse of the triangle.
[b]p8.[/b] Let $ABC$ be a right triangle with a right angle at $B$, $AB = 9$, and $BC = 7$. Suppose that point $P$ lies on segment $AB$ with $AP = 3$ and that point $Q$ lies on ray $BC$ with $BQ = 11$. Let segments $AC$ and $P Q$ intersect at point $X$. Compute the positive difference between the areas of triangles $AP X$ and $CQX$.
[b]p9.[/b] Fresh Mann and Sophy Moore are racing each other in a river. Fresh Mann swims downstream, while Sophy Moore swims $\frac12$ mile upstream and then travels downstream in a boat. They start at the same time, and they reach the finish line 1 mile downstream of the starting point simultaneously. If Fresh Mann and Sophy Moore both swim at $1$ mile per hour in still water and the boat travels at 10 miles per hour in still water, find the speed of the current.
[u]Round 4[/u]
[b]p10.[/b] The Fibonacci numbers are defined by $F_0 = 0$, $F_1 = 1$, and for $n \ge 1$, $F_{n+1} = F_n + F_{n-1}$. The first few terms of the Fibonacci sequence are $0$, $1$, $1$, $2$, $3$, $5$, $8$, $13$. Every positive integer can be expressed as the sum of nonconsecutive, distinct, positive Fibonacci numbers, for example, $7 = 5 + 2$. Express $121$ as the sum of nonconsecutive, distinct, positive Fibonacci numbers. (It is not permitted to use both a $2$ and a $1$ in the expression.)
[b]p11.[/b] There is a rectangular box of surface area $44$ whose space diagonals have length $10$. Find the sum of the lengths of all the edges of the box.
[b]p12.[/b] Let $ABC$ be an acute triangle, and let $D$ and $E$ be the feet of the altitudes to $BC$ and $CA$, respectively. Suppose that segments $AD$ and $BE$ intersect at point $H$ with $AH = 20$ and $HD = 13$. Compute $BD \cdot CD$.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c4h2809420p24782524]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Balkan MO Shortlist, G1
Let $ABCDE$ be a pentagon with $\hat{A}=\hat{B}=\hat{C}=\hat{D}=120^{\circ}$. Prove that $4\cdot AC \cdot BD\geq 3\cdot AE \cdot ED$.