Found problems: 63
2006 MOP Homework, 4
Let $ABC$ be a right triangle with$ \angle A = 90^o$. Point $D$ lies on side $BC$ such that $\angle BAD = \angle CAD$. Point $I_a$ is the excenter of the triangle opposite $A$. Prove that $\frac{AD}{DI_a } \le \sqrt{2} -1$
2016 German National Olympiad, 3
Let $I_a$ be the $A$-excenter of a scalene triangle $ABC$. And let $M$ be the point symmetric to $I_a$ about line $BC$.
Prove that line $AM$ is parallel to the line through the circumcenter and the orthocenter of triangle $I_aCB$.
Ukrainian TYM Qualifying - geometry, 2020.10
In triangle $ABC$, point $I$ is the center, point $I_a$ is the center of the excircle tangent to the side $BC$. From the vertex $A$ inside the angle $BAC$ draw rays $AX$ and $AY$. The ray $AX$ intersects the lines $BI$, $CI$, $BI_a$, $CI_a$ at points $X_1$, $...$, $X_4$, respectively, and the ray $AY$ intersects the same lines at points $Y_1$, $...$, $Y_4$ respectively. It turned out that the points $X_1,X_2,Y_1,Y_2$ lie on the same circle. Prove the equality $$\frac{X_1X_2}{X_3X_4}= \frac{Y_1Y_2}{Y_3Y_4}.$$
1955 Moscow Mathematical Olympiad, 304
The centers $O_1, O_2$ and $O_3$ of circles exscribed about $\vartriangle ABC$ are connected. Prove that $O_1O_2O_3$ is an acute-angled one.
2004 India IMO Training Camp, 1
Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$.
[i]Proposed by C.R. Pranesachar, India [/i]
2016 Saudi Arabia BMO TST, 2
Let $I_a$ be the excenter of triangle $ABC$ with respect to $A$. The line $AI_a$ intersects the circumcircle of triangle ABC at $T$. Let $X$ be a point on segment $TI_a$ such that $X I_a^2 = XA \cdot X T$ The perpendicular line from $X$ to $BC$ intersects $BC$ at $A'$. Define $B'$ and $C'$ in the same way. Prove that $AA',BB'$ and $CC'$ are concurrent.
Indonesia MO Shortlist - geometry, g10
Given a triangle $ABC$ with incenter $I$ . It is known that $E_A$ is center of the ex-circle tangent to $BC$. Likewise, $E_B$ and $E_C$ are the centers of the ex-circles tangent to $AC$ and $AB$, respectively. Prove that $I$ is the orthocenter of the triangle $E_AE_BE_C$.
2021 Pan-American Girls' Math Olympiad, Problem 6
Let $ABC$ be a triangle with incenter $I$, and $A$-excenter $\Gamma$. Let $A_1,B_1,C_1$ be the points of tangency of $\Gamma$ with $BC,AC$ and $AB$, respectively. Suppose $IA_1, IB_1$ and $IC_1$ intersect $\Gamma$ for the second time at points $A_2,B_2,C_2$, respectively. $M$ is the midpoint of segment $AA_1$. If the intersection of $A_1B_1$ and $A_2B_2$ is $X$, and the intersection of $A_1C_1$ and $A_2C_2$ is $Y$, prove that $MX=MY$.
2021 Taiwan TST Round 3, G
Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other
Kyiv City MO Juniors 2003+ geometry, 2017.9.5
Let $I$ be the center of the inscribed circle of $ABC$ and let $I_A$ be the center of the exscribed circle touching the side $BC$. Let $M$ be the midpoint of the side $BC$, and $N$ be the midpoint of the arc $BAC$ of the circumscribed circle of $ABC$ . The point $T$ is symmetric to the point $N$ wrt point $A$. Prove that the points $I_A,M,I,T$ lie on the same circle.
(Danilo Hilko)
2025 India National Olympiad, P3
Euclid has a tool called splitter which can only do the following two types of operations :
• Given three non-collinear marked points $X,Y,Z$ it can draw the line which forms the interior angle bisector of $\angle{XYZ}$.
• It can mark the intersection point of two previously drawn non-parallel lines .
Suppose Euclid is only given three non-collinear marked points $A,B,C$ in the plane . Prove that Euclid can use the splitter several times to draw the centre of circle passing through $A,B$ and $C$.
[i]Proposed by Shankhadeep Ghosh[/i]
2023 Yasinsky Geometry Olympiad, 3
Let $I$ be the center of the inscribed circle of the triangle $ABC$. The inscribed circle is tangent to sides $BC$ and $AC$ at points $K_1$ and $K_2$ respectively. Using a ruler and a compass, find the center of excircle for triangle $CK_1K_2$ which is tangent to side $CK_2$, in at most $4$ steps (each step is to draw a circle or a line).
(Hryhorii Filippovskyi, Volodymyr Brayman)
1982 Brazil National Olympiad, 1
The angles of the triangle $ABC$ satisfy $\angle A / \angle C = \angle B / \angle A = 2$. The incenter is $O. K, L$ are the excenters of the excircles opposite $B$ and $A$ respectively. Show that triangles $ABC$ and $OKL$ are similar.
2021 Saudi Arabia Training Tests, 24
Let $ABC$ be triangle with $M$ is the midpoint of $BC$ and $X, Y$ are excenters with respect to angle $B,C$. Prove that $MX$, $MY$ intersect $AB$, $AC$ at four points that are vertices of circumscribed quadrilateral.
2019 Junior Balkan Team Selection Tests - Romania, 3
In the acute triangle $ABC$ point $I$ is the incenter, $O$ is the circumcenter, while $I_a$ is the excenter opposite the vertex $A$. Point $A'$ is the reflection of $A$ across the line $BC$. Prove that angles $\angle IOI_a$ and $\angle IA'I_a$ are equal.
2004 Germany Team Selection Test, 2
Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$.
[i]Proposed by C.R. Pranesachar, India [/i]
2011 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a triangle, $I_a$ the center of the excircle at side $BC$, and $M$ its reflection across $BC$. Prove that $AM$ is parallel to the Euler line of the triangle $BCI_a$.
Russian TST 2021, P2
Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other
Kyiv City MO Seniors Round2 2010+ geometry, 2019.10.3
Denote in the triangle $ABC$ by $T_A,T_B,T_C$ the touch points of the exscribed circles of $\vartriangle ABC$, tangent to sides $BC, AC$ and $AB$ respectively. Let $O$ be the center of the circumcircle of $\vartriangle ABC$, and $I$ is the center of it's inscribed circle. It is known that $OI\parallel AC$. Prove that $\angle T_A T_B T_C= 90^o - \frac12 \angle ABC$.
(Anton Trygub)
2016 Oral Moscow Geometry Olympiad, 5
Points $I_A, I_B, I_C$ are the centers of the excircles of $ABC$ related to sides $BC, AC$ and $AB$ respectively. Perpendicular from $I_A$ to $AC$ intersects the perpendicular from $I_B$ to $B_C$ at point $X_C$. The points $X_A$ and $X_B$. Prove that the lines $I_AX_A, I_BX_B$ and $I_CX_C$ intersect at the same point.
2013 Saudi Arabia Pre-TST, 2.4
$\vartriangle ABC$ is a triangle and $I_b. I_c$ its excenters opposite to $B,C$. Prove that $\vartriangle ABC$ is right at $A$ if and only if its area is equal to $\frac12 AI_b \cdot AI_c$.
2018 Sharygin Geometry Olympiad, 6
Let $ABCD$ be a circumscribed quadrilateral. Prove that the common point of the diagonals, the incenter of triangle $ABC$ and the centre of excircle of triangle $CDA$ touching the side $AC$ are collinear.
Indonesia Regional MO OSP SMA - geometry, 2014.2
Given an acute triangle $ABC$ with $AB <AC$. The ex-circles of triangle $ABC$ opposite $B$ and $C$ are centered on $B_1$ and $C_1$, respectively. Let $D$ be the midpoint of $B_1C_1$. Suppose that $E$ is the point of intersection of $AB$ and $CD$, and $F$ is the point of intersection of $AC$ and $BD$. If $EF$ intersects $BC$ at point $G$, prove that $AG$ is the bisector of $\angle BAC$.
2021 Thailand TST, 3
Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other
Kharkiv City MO Seniors - geometry, 2021.11.4
In the triangle $ABC$, the segment $CL$ is the angle bisector. The $C$-exscribed circle with center at the point $ I_c$ touches the side of the $AB$ at the point $D$ and the extension of sides $CA$ and $CB$ at points $P$ and $Q$, respectively. It turned out that the length of the segment $CD$ is equal to the radius of this exscribed circle. Prove that the line $PQ$ bisects the segment $I_CL$.