Found problems: 63
2013 Saudi Arabia Pre-TST, 2.4
$\vartriangle ABC$ is a triangle and $I_b. I_c$ its excenters opposite to $B,C$. Prove that $\vartriangle ABC$ is right at $A$ if and only if its area is equal to $\frac12 AI_b \cdot AI_c$.
1955 Moscow Mathematical Olympiad, 304
The centers $O_1, O_2$ and $O_3$ of circles exscribed about $\vartriangle ABC$ are connected. Prove that $O_1O_2O_3$ is an acute-angled one.
2011 Junior Balkan Team Selection Tests - Romania, 3
Let $ABC$ be a triangle, $I_a$ the center of the excircle at side $BC$, and $M$ its reflection across $BC$. Prove that $AM$ is parallel to the Euler line of the triangle $BCI_a$.
2019 Oral Moscow Geometry Olympiad, 6
In the acute triangle $ABC$, the point $I_c$ is the center of excircle on the side $AB$, $A_1$ and $B_1$ are the tangency points of the other two excircles with sides $BC$ and $CA$, respectively, $C'$ is the point on the circumcircle diametrically opposite to point $C$. Prove that the lines $I_cC'$ and $A_1B_1$ are perpendicular.
2021 Pan-American Girls' Math Olympiad, Problem 6
Let $ABC$ be a triangle with incenter $I$, and $A$-excenter $\Gamma$. Let $A_1,B_1,C_1$ be the points of tangency of $\Gamma$ with $BC,AC$ and $AB$, respectively. Suppose $IA_1, IB_1$ and $IC_1$ intersect $\Gamma$ for the second time at points $A_2,B_2,C_2$, respectively. $M$ is the midpoint of segment $AA_1$. If the intersection of $A_1B_1$ and $A_2B_2$ is $X$, and the intersection of $A_1C_1$ and $A_2C_2$ is $Y$, prove that $MX=MY$.
2022 Macedonian Mathematical Olympiad, Problem 5
An acute $\triangle ABC$ with circumcircle $\Gamma$ is given. $I$ and $I_a$ are the incenter and $A-$excenter of $\triangle ABC$ respectively. The line $AI$ intersects $\Gamma$ again at $D$ and $A'$ is the antipode of $A$ with respect to $\Gamma$.
$X$ and $Y$ are point on $\Gamma$ such that $\angle IXD = \angle I_aYD = 90^\circ$. The tangents to $\Gamma$ at $X$ and $Y$ intersect in point $Z$. Prove that $A', D$ and $Z$ are collinear.
[i]Proposed by Nikola Velov[/i]
2012 Oral Moscow Geometry Olympiad, 4
In triangle $ABC$, point $I$ is the center of the inscribed circle points, points $I_A$ and $I_C$ are the centers of the excircles, tangent to sides $BC$ and $AB$, respectively. Point $O$ is the center of the circumscribed circle of triangle $II_AI_C$. Prove that $OI \perp AC$
Russian TST 2021, P2
Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other
2019 Junior Balkan Team Selection Tests - Romania, 3
In the acute triangle $ABC$ point $I$ is the incenter, $O$ is the circumcenter, while $I_a$ is the excenter opposite the vertex $A$. Point $A'$ is the reflection of $A$ across the line $BC$. Prove that angles $\angle IOI_a$ and $\angle IA'I_a$ are equal.
2018 Oral Moscow Geometry Olympiad, 4
On the side $AB$ of the triangle $ABC$, point $M$ is selected. In triangle $ACM$ point $I_1$ is the center of the inscribed circle, $J_1$ is the center of excircle wrt side $CM$. In the triangle $BCM$ point $I_2$ is the center of the inscribed circle, $J_2$ is the center of excircle wrt side $CM$. Prove that the line passing through the midpoints of the segments $I_1I_2$ and $J_1J_2$ is perpendicular to $AB$.
2019 Yasinsky Geometry Olympiad, p6
The $ABC$ triangle is given, point $I_a$ is the center of an exscribed circle touching the side $BC$ , the point $M$ is the midpoint of the side $BC$, the point $W$ is the intersection point of the bisector of the angle $A$ of the triangle $ABC$ with the circumscribed circle around him. Prove that the area of the triangle $I_aBC$ is calculated by the formula $S_{ (I_aBC)} = MW \cdot p$, where $p$ is the semiperimeter of the triangle $ABC$.
(Mykola Moroz)
2016 Oral Moscow Geometry Olympiad, 5
Points $I_A, I_B, I_C$ are the centers of the excircles of $ABC$ related to sides $BC, AC$ and $AB$ respectively. Perpendicular from $I_A$ to $AC$ intersects the perpendicular from $I_B$ to $B_C$ at point $X_C$. The points $X_A$ and $X_B$. Prove that the lines $I_AX_A, I_BX_B$ and $I_CX_C$ intersect at the same point.
1993 Tournament Of Towns, (363) 2
Let $O$ be the centre of the circle touching the side $AC$ of triangle $ABC$ and the continuations of the sides $BA$ and $BC$. $D$ is the centre of the circle passing through the points $A$, $B$ and $O$. Prove that the points $A$, $B$, $C$ and $D$ lie on a circle.
(YF Akurlich)
2018 Sharygin Geometry Olympiad, 6
Let $ABCD$ be a circumscribed quadrilateral. Prove that the common point of the diagonals, the incenter of triangle $ABC$ and the centre of excircle of triangle $CDA$ touching the side $AC$ are collinear.
2014 Contests, 1
In triangle $ABC, \angle A= 45^o, BH$ is the altitude, the point $K$ lies on the $AC$ side, and $BC = CK$. Prove that the center of the circumscribed circle of triangle $ABK$ coincides with the center of an excircle of triangle $BCH$.
2014 Oral Moscow Geometry Olympiad, 6
A convex quadrangle $ABCD$ is given. Let $I$ and $J$ be the circles of circles inscribed in the triangles $ABC$ and $ADC$, respectively, and $I_a$ and $J_a$ are the centers of the excircles circles of triangles $ABC$ and $ADC$, respectively (inscribed in the angles $BAC$ and $DAC$, respectively). Prove that the intersection point $K$ of the lines $IJ_a$ and $JI_a$ lies on the bisector of the angle $BCD$.
2023 Yasinsky Geometry Olympiad, 3
Let $I$ be the center of the inscribed circle of the triangle $ABC$. The inscribed circle is tangent to sides $BC$ and $AC$ at points $K_1$ and $K_2$ respectively. Using a ruler and a compass, find the center of excircle for triangle $CK_1K_2$ which is tangent to side $CK_2$, in at most $4$ steps (each step is to draw a circle or a line).
(Hryhorii Filippovskyi, Volodymyr Brayman)
2024 India IMOTC, 7
Let $ABC$ be an acute-angled triangle with $AB<AC$, incentre $I$, and let $M$ be the midpoint of major arc $BAC$. Suppose the perpendicular line from $A$ to segment $BC$ meets lines $BI$, $CI$, and $MI$ at points $P$, $Q$, and $K$ respectively. Prove that the $A-$median line in $\triangle AIK$ passes through the circumcentre of $\triangle PIQ$.
[i]Proposed by Pranjal Srivastava and Rohan Goyal[/i]
Kyiv City MO Seniors Round2 2010+ geometry, 2019.10.3
Denote in the triangle $ABC$ by $T_A,T_B,T_C$ the touch points of the exscribed circles of $\vartriangle ABC$, tangent to sides $BC, AC$ and $AB$ respectively. Let $O$ be the center of the circumcircle of $\vartriangle ABC$, and $I$ is the center of it's inscribed circle. It is known that $OI\parallel AC$. Prove that $\angle T_A T_B T_C= 90^o - \frac12 \angle ABC$.
(Anton Trygub)
Kharkiv City MO Seniors - geometry, 2019.10.5
In triangle $ABC$, point$ I$ is incenter , $I_a$ is the $A$-excenter. Let $K$ be the intersection point of the $BC$ with the external bisector of the angle $BAC$, and $E$ be the midpoint of the arc $BAC$ of the circumcircle of triangle $ABC$. Prove that $K$ is the orthocenter of triangle $II_aE$.
2019 Saudi Arabia BMO TST, 3
The triangle $ABC$ ($AB > BC$) is inscribed in the circle $\Omega$. On the sides $AB$ and $BC$, the points $M$ and $N$ are chosen, respectively, so that $AM = CN$, The lines $MN$ and $AC$ intersect at point $K$. Let $P$ be the center of the inscribed circle of triangle $AMK$, and $Q$ the center of the excircle of the triangle $CNK$ tangent to side $CN$. Prove that the midpoint of the arc $ABC$ of the circle $\Omega$ is equidistant from the $P$ and $Q$.
Indonesia Regional MO OSP SMA - geometry, 2014.2
Given an acute triangle $ABC$ with $AB <AC$. The ex-circles of triangle $ABC$ opposite $B$ and $C$ are centered on $B_1$ and $C_1$, respectively. Let $D$ be the midpoint of $B_1C_1$. Suppose that $E$ is the point of intersection of $AB$ and $CD$, and $F$ is the point of intersection of $AC$ and $BD$. If $EF$ intersects $BC$ at point $G$, prove that $AG$ is the bisector of $\angle BAC$.
2018 China Western Mathematical Olympiad, 4
In acute angled $\triangle ABC$, $AB > AC$, points $E, F$ lie on $AC, AB$ respectively, satisfying $BF+CE = BC$. Let $I_B, I_C$ be the excenters of $\triangle ABC$ opposite $B, C$ respectively, $EI_C, FI_B$ intersect at $T$, and let $K$ be the midpoint of arc $BAC$. Let $KT$ intersect the circumcircle of $\triangle ABC$ at $K,P$. Show $T,F,P,E$ concyclic.
2020 IMO Shortlist, G6
Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other
2021-IMOC, G9
Let the incenter and the $A$-excenter of $\triangle ABC$ be $I$ and $I_A$, respectively. Let $BI$ intersect $AC$ at $E$ and $CI$ intersect $AB$ at $F$. Suppose that the reflections of $I$ with respect to $EF$, $FI_A$, $EI_A$ are $X$, $Y$, $Z$, respectively. Show that $\odot(XYZ)$ and $\odot(ABC)$ are tangent to each other.