This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2006 South East Mathematical Olympiad, 2

In $\triangle ABC$, $\angle ABC=90^{\circ}$. Points $D,G$ lie on side $AC$. Points $E, F$ lie on segment $BD$, such that $AE \perp BD $ and $GF \perp BD$. Show that if $BE=EF$, then $\angle ABG=\angle DFC$.

2012 CHKMO, 4

In $\triangle ABC$, $AB>AC$. In the circumcircle $(O)$ of $\triangle ABC$, $M$ is the midpoint of arc $BAC$. The incircle $(I)$ of $\triangle ABC$ touches $BC$ at $D$, the line through $D$ parallel to $AI$ intersects $(I)$ again at $P$. Prove that $AP$ and $IM$ intersect at a point on $(O)$.

2023 CCA Math Bonanza, T1

Tags:
Evan's bike lock has been stolen by Jonathan, and he has changed the passcode. Jonathan is refusing to tell Evan the passcode. All Evan knows is it is a five-digit number with following properties: (a) It can be written as $a\cdot \overline{ab}\cdot\overline{abc}$ where $a, b, c$ are pairwise different digits and $a$, $\overline{ab}$, $\overline{abc}$ are prime. (b) The sum of its digits is 21. (c) The passcode's last digit is $c$. Find the bike passcode. [i]Team #1[/i]

2025 Harvard-MIT Mathematics Tournament, 1

Compute the sum of the positive divisors (including $1$) of $9!$ that have units digit $1.$

1992 Austrian-Polish Competition, 9

Given an integer $n > 1$, consider words composed of $n$ letters $A$ and $n$ letters $B$. A word $X_1...X_{2n}$ is said to belong to set $R(n)$ (respectively, $S(n)$) if no initial segment (respectively, exactly one initial segment) $X_1...X_k$ with $1 \le k < 2n$ consists of equally many letters $A$ and $B$. If $r(n)$ and $s(n)$ denote the cardinalities of $R(n)$ and $S(n)$ respectively, compute $s(n)/r(n)$.

2005 IMC, 6

6. If $ p,q$ are rationals, $r=p+\sqrt{7}q$, then prove there exists a matrix $\left(\begin{array}{cc}a&b\\c&d\end{array}\right) \in M_{2}(Z)- ( \pm I_{2})$ for which $\frac{ar+b}{cr+d}=r$ and $det(A)=1$

2012 Saint Petersburg Mathematical Olympiad, 5

$S$ is natural, and $S=d_{1}>d_2>...>d_{1000000}=1$ are all divisors of $S$. What minimal number of divisors can have $d_{250}$?

2021 AMC 10 Fall, 25

A rectangle with side lengths $1{ }$ and $3,$ a square with side length $1,$ and a rectangle $R$ are inscribed inside a larger square as shown. The sum of all possible values for the area of $R$ can be written in the form $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. What is $m+n?$ [asy] size(8cm); draw((0,0)--(10,0)); draw((0,0)--(0,10)); draw((10,0)--(10,10)); draw((0,10)--(10,10)); draw((1,6)--(0,9)); draw((0,9)--(3,10)); draw((3,10)--(4,7)); draw((4,7)--(1,6)); draw((0,3)--(1,6)); draw((1,6)--(10,3)); draw((10,3)--(9,0)); draw((9,0)--(0,3)); draw((6,13/3)--(10,22/3)); draw((10,22/3)--(8,10)); draw((8,10)--(4,7)); draw((4,7)--(6,13/3)); label("$3$",(9/2,3/2),N); label("$3$",(11/2,9/2),S); label("$1$",(1/2,9/2),E); label("$1$",(19/2,3/2),W); label("$1$",(1/2,15/2),E); label("$1$",(3/2,19/2),S); label("$1$",(5/2,13/2),N); label("$1$",(7/2,17/2),W); label("$R$",(7,43/6),W); [/asy] $(\textbf{A})\: 14\qquad(\textbf{B}) \: 23\qquad(\textbf{C}) \: 46\qquad(\textbf{D}) \: 59\qquad(\textbf{E}) \: 67$

2002 Pan African, 4

Tags:
Seven students in a class compare their marks in 12 subjects studied and observe that no two of the students have identical marks in all 12 subjects. Prove that we can choose 6 subjects such that any two of the students have different marks in at least one of these subjects.

2020 AIME Problems, 15

Tags: geometry
Let $\triangle ABC$ be an acute scalene triangle with circumcircle $\omega$. The tangents to $\omega$ at $B$ and $C$ intersect at $T$. Let $X$ and $Y$ be the projections of $T$ onto lines $AB$ and $AC$, respectively. Suppose $BT=CT=16$, $BC=22$, and $TX^2+TY^2+XY^2=1143$. Find $XY^2$.

2019 China Team Selection Test, 4

Does there exist a finite set $A$ of positive integers of at least two elements and an infinite set $B$ of positive integers, such that any two distinct elements in $A+B$ are coprime, and for any coprime positive integers $m,n$, there exists an element $x$ in $A+B$ satisfying $x\equiv n \pmod m$ ? Here $A+B=\{a+b|a\in A, b\in B\}$.

2011-2012 SDML (High School), 10

Tags:
Let $X=\left\{1,2,3,4,5,6\right\}$. How many non-empty subsets of $X$ do not contain two consecutive integers? $\text{(A) }16\qquad\text{(B) }18\qquad\text{(C) }20\qquad\text{(D) }21\qquad\text{(E) }24$

2020 USEMO, 3

Let $ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. Let $\Gamma$ denote the circumcircle of triangle $ABC$, and $N$ the midpoint of $OH$. The tangents to $\Gamma$ at $B$ and $C$, and the line through $H$ perpendicular to line $AN$, determine a triangle whose circumcircle we denote by $\omega_A$. Define $\omega_B$ and $\omega_C$ similarly. Prove that the common chords of $\omega_A$,$\omega_B$ and $\omega_C$ are concurrent on line $OH$. Proposed by Anant Mudgal

2023 Iran MO (3rd Round), 1

Given $12$ complex numbers $z_1,...,z_{12}$ st for each $1 \leq i \leq 12$: $$|z_i|=2 , |z_i - z_{i+1}| \geq 1$$ prove that : $$\sum_{1 \leq i \leq 12} \frac{1}{|z_i\overline{z_{i+1}}+1|^2} \geq \frac{1}{2}$$

2014 Contests, 2

Let $ABC$ be a triangle. Let $H$ be the foot of the altitude from $C$ on $AB$. Suppose that $AH = 3HB$. Suppose in addition we are given that (a) $M$ is the midpoint of $AB$; (b) $N$ is the midpoint of $AC$; (c) $P$ is a point on the opposite side of $B$ with respect to the line $AC$ such that $NP = NC$ and $PC = CB$. Prove that $\angle APM = \angle PBA$.

1973 AMC 12/AHSME, 1

A chord which is the perpendicular bisector of a radius of length 12 in a circle, has length $ \textbf{(A)}\ 3\sqrt3 \qquad \textbf{(B)}\ 27 \qquad \textbf{(C)}\ 6\sqrt3 \qquad \textbf{(D)}\ 12\sqrt3 \qquad \textbf{(E)}\ \text{ none of these}$

2021 AMC 10 Fall, 19

Tags:
A disk of radius $1$ rolls all the way around the inside of a square of side length $s>4$ and sweeps out a region of area $A$. A second disk of radius $1$ rolls all the way around the outside of the same square and sweeps out a region of area $2A$. The value of $s$ can be written as $a+\frac{b\pi}{c}$, where $a,b$, and $c$ are positive integers and $b$ and $c$ are relatively prime. What is $a+b+c$? $\textbf{(A)} ~10\qquad\textbf{(B)} ~11\qquad\textbf{(C)} ~12\qquad\textbf{(D)} ~13\qquad\textbf{(E)} ~14$

2004 Federal Math Competition of S&M, 2

Tags: geometry
Let $r$ be the inradius of an acute triangle. Prove that the sum of the distances from the orthocenter to the sides of the triangle does not exceed $3r$

2010 Contests, 4

Let $P(x)=ax^3+bx^2+cx+d$ be a polynomial with real coefficients such that \[\min\{d,b+d\}> \max\{|{c}|,|{a+c}|\}\] Prove that $P(x)$ do not have a real root in $[-1,1]$.

2005 Romania National Olympiad, 4

Tags:
On a circle there are written 2005 non-negative integers with sum 7022. Prove that there exist two pairs formed with two consecutive numbers on the circle such that the sum of the elements in each pair is greater or equal with 8. [i]After an idea of Marin Chirciu[/i]

1988 All Soviet Union Mathematical Olympiad, 473

Form $10A$ has $29$ students who are listed in order on its duty roster. Form $10B$ has $32$ students who are listed in order on its duty roster. Every day two students are on duty, one from form $10A$ and one from form $10B$. Each day just one of the students on duty changes and is replaced by the following student on the relevant roster (when the last student on a roster is replaced he is replaced by the first). On two particular days the same two students were on duty. Is it possible that starting on the first of these days and ending the day before the second, every pair of students (one from $10A$ and one from $10B$) shared duty exactly once?

1995 Brazil National Olympiad, 2

Find all real-valued functions on the positive integers such that $f(x + 1019) = f(x)$ for all $x$, and $f(xy) = f(x) f(y)$ for all $x,y$.

2018 CMIMC Individual Finals, 3

Tags:
Let $\mathcal{F}$ be a family of subsets of $\{1,2,\ldots, 2017\}$ with the following property: if $S_1$ and $S_2$ are two elements of $\mathcal{F}$ with $S_1\subsetneq S_2$, then $|S_2\setminus S_1|$ is odd. Compute the largest number of subsets $\mathcal{F}$ may contain.

2022 Nigerian MO round 3, Problem 4

Let $PT$ and $PB$ be two tangents to a circle, $T$ and $B$ on the circle. $AB$ is the diameter of the circle through $B$ and $TH$ is the perpendicular from $T$ to $AB$, $H$ on $AB$. Prove that $AP$ bisects $TH$.

1955 Kurschak Competition, 1

Prove that if the two angles on the base of a trapezoid are different, then the diagonal starting from the smaller angle is longer than the other diagonal. [img]https://cdn.artofproblemsolving.com/attachments/7/1/77cf4958931df1c852c347158ff1e2bbcf45fd.png[/img]