This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2003 All-Russian Olympiad, 2

Let $ a_0$ be a natural number. The sequence $ (a_n)$ is defined by $ a_{n\plus{}1}\equal{}\frac{a_n}{5}$ if $ a_n$ is divisible by $ 5$ and $ a_{n\plus{}1}\equal{}[a_n \sqrt{5}]$ otherwise . Show that the sequence $ a_n$ is increasing starting from some term.

1984 Putnam, A6

Let $n$ be a positive integer, and let $f(n)$ denote the last nonzero digit in the decimal expansion of $n!$. $(\text a)$ Show that if $a_1,a_2,\ldots,a_k$ are distinct nonnegative integers, then $f(5^{a_1}+5^{a_2}+\ldots+5^{a_k})$ depends only on the sum $a_1+a_2+\ldots+a_k$. $(\text b)$ Assuming part $(\text a)$, we can define $$g(s)=f(5^{a_1}+5^{a_2}+\ldots+5^{a_k}),$$where $s=a_1+a_2+\ldots+a_k$. Find the least positive integer $p$ for which $$g(s)=g(s+p),\enspace\text{for all }s\ge1,$$or show that no such $p$ exists.

2005 Estonia National Olympiad, 3

A post service of some country uses carriers to transport the mail, each carrier’s task is to bring the mail from one city to a neighbouring city. It is known that it is possible to send mail from any city to the capital $P$ . For any two cities $A$ and $B$, call $B$ [i]more important than[/i] $A$, if every possible route of mail from $A$ to the capital $P$ goes through $B$. a) Prove that, for any three different cities $A, B$, and $C$, if $B$ is more important than $A$ and $C$ is more important than $B$, then $C$ is more important than $A$. b) Prove that, for any three different cities $A, B$, and $C$, if both B and C are more important than $A$, then either $C$ is more important than $B$ or $B$ is more important than $C$.

2014 District Olympiad, 3

Tags: incenter , geometry
The points $M, N,$ and $P$ are chosen on the sides $BC, CA$ and $AB$ of the $\Delta ABC$ such that $BM=BP$ and $CM=CN$. The perpendicular dropped from $B$ to $MP$ and the perpendicular dropped from $C$ to $MN$ intersect at $I$. Prove that the angles $\measuredangle{IPA}$ and $\measuredangle{INC}$ are congruent.

2009 Swedish Mathematical Competition, 2

Tags: equation , algebra
Find all real solutions of the equation \[ \left(1+x^2\right)\left(1+x^3\right)\left(1+x^5\right)=8x^5 \]

2017 Canada National Olympiad, 2

Define a function $f(n)$ from the positive integers to the positive integers such that $f(f(n))$ is the number of positive integer divisors of $n$. Prove that if $p$ is a prime, then $f(p)$ is prime.

JOM 2015 Shortlist, C6

In a massive school which has $m$ students, and each student took at least one subject. Let $p$ be an odd prime. Given that: (i) each student took at most $p+1$ subjects. \\ (ii) each subject is taken by at most $p$ students. \\ (iii) any pair of students has at least $1$ subject in common. \\ Find the maximum possible value of $m$.

2022 Latvia Baltic Way TST, P9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$. Let the lines $AB$ and $CD$ intersect at $P$, and the lines $AD$ and $BC$ intersect at $Q$. Let then the circumcircle of the triangle $\triangle APQ$ intersect $\Omega$ at $R \neq A$. Prove that the line $CR$ goes through the midpoint of the segment $PQ$.

2019 Thailand TST, 1

Let $n$ be a positive integer. Let $S$ be a set of $n$ positive integers such that the greatest common divisors of all nonempty sets of $S$ are distinct. Determine the smallest possible number of distinct prime divisors of the product of the elements of $S$.

2021 Balkan MO Shortlist, N2

Denote by $l(n)$ the largest prime divisor of $n$. Let $a_{n+1} = a_n + l(a_n)$ be a recursively defined sequence of integers with $a_1 = 2$. Determine all natural numbers $m$ such that there exists some $i \in \mathbb{N}$ with $a_i = m^2$. [i]Proposed by Nikola Velov, North Macedonia[/i]

2000 Vietnam National Olympiad, 2

Tags: geometry
Find all integers $ n \ge 3$ such that there are $ n$ points in space, with no three on a line and no four on a circle, such that all the circles pass through three points between them are congruent.

2016 LMT, 20

Tags:
Find the number of partitions of the set $\{1,2,3,\cdots ,11,12\}$ into three nonempty subsets such that no subset has two elements which differ by $1$. [i]Proposed by Nathan Ramesh

1958 AMC 12/AHSME, 22

A particle is placed on the parabola $ y \equal{} x^2 \minus{} x \minus{} 6$ at a point $ P$ whose $ y$-coordinate is $ 6$. It is allowed to roll along the parabola until it reaches the nearest point $ Q$ whose $ y$-coordinate is $ \minus{}6$. The horizontal distance traveled by the particle (the numerical value of the difference in the $ x$-coordinates of $ P$ and $ Q$) is: $ \textbf{(A)}\ 5\qquad \textbf{(B)}\ 4\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 2\qquad \textbf{(E)}\ 1$

2017 Purple Comet Problems, 5

Tags: algebra
A store had $376$ chocolate bars. Min bought some of the bars, and Max bought $41$ more of the bars than Min bought. After that, the store still had three times as many chocolate bars as Min bought. Find the number of chocolate bars that Min bought.

2009 China Team Selection Test, 3

Let $ X$ be a set containing $ 2k$ elements, $ F$ is a set of subsets of $ X$ consisting of certain $ k$ elements such that any one subset of $ X$ consisting of $ k \minus{} 1$ elements is exactly contained in an element of $ F.$ Show that $ k \plus{} 1$ is a prime number.

2018 Malaysia National Olympiad, A4

Tags: octagon , area , geometry
Given a regular octagon $ABCDEFGH$ with side length $3$. By drawing the four diagonals $AF$, $BE$, $CH$, and $DG$, the octagon is divided into a square, four triangles, and four rectangles. Find the sum of the areas of the square and the four triangles.

2016 Bosnia And Herzegovina - Regional Olympiad, 3

$h_a$, $h_b$ and $h_c$ are altitudes, $t_a$, $t_b$ and $t_c$ are medians of acute triangle, $r$ radius of incircle, and $R$ radius of circumcircle of acute triangle $ABC$. Prove that $$\frac{t_a}{h_a}+\frac{t_b}{h_b}+\frac{t_c}{h_c} \leq 1+ \frac{R}{r}$$

2023 MOAA, 15

Tags:
Triangle $ABC$ has $AB = 5$, $BC = 7$, $CA = 8$. Let $M$ be the midpoint of $BC$ and let points $P$ and $Q$ lie on $AB$ and $AC$ respectively such that $MP \perp AB$ and $MQ \perp AC$. If $H$ is the orthocenter of $\triangle{APQ}$ then the area of $\triangle{HPM}$ can be expressed in the form $\frac{a\sqrt{b}}{c}$ where $a$ and $c$ are relatively prime positive integers and $b$ is square-free. Find $a+b+c$. [i]Proposed by Harry Kim[/i]

1965 AMC 12/AHSME, 16

Let line $ AC$ be perpendicular to line $ CE$. Connect $ A$ to $ D$, the midpoint of $ CE$, and connect $ E$ to $ B$, the midpoint of $ AC$. If $ AD$ and $ EB$ intersect in point $ F$, and $ \overline{BC} \equal{} \overline{CD} \equal{} 15$ inches, then the area of triangle $ DFE$, in square inches, is: $ \textbf{(A)}\ 50 \qquad \textbf{(B)}\ 50\sqrt {2} \qquad \textbf{(C)}\ 75 \qquad \textbf{(D)}\ \frac {15}{2}\sqrt {105} \qquad \textbf{(E)}\ 100$

2016 Kosovo National Mathematical Olympiad, 5

Tags: geometry
In trapezoid $ABCD$ with $AB$ parallel to $CD$ show that : $\frac{|AB|^2-|BC|^2+|AC|^2}{|CD|^2-|AD|^2+|AC|^2}=\frac{|AB|}{|CD|}=\frac{|AB|^2-|AD|^2+|BD|^2}{|CD|^2-|BC|^2+|BD|^2}$

1970 Putnam, B3

A closed subset $S$ of $\mathbb{R}^{2}$ lies in $a<x<b$. Show that its projection on the $y$-axis is closed.

2005 Turkey MO (2nd round), 4

Find all triples of nonnegative integers $(m,n,k)$ satisfying $5^m+7^n=k^3$.

LMT Accuracy Rounds, 2022 S4

Tags: algebra
Kevin runs uphill at a speed that is $4$ meters per second slower than his speed when he runs downhill. Kevin takes a total of $80$ seconds to run up and down a hill on one path. Given that the path is $300$ meters long (he travels $600$ meters total), find how long Kevin takes to run up the hill in seconds.

2023/2024 Tournament of Towns, 1

1. A strip for playing "hopscotch" consists of ten squares numbered consecutively $1,2, \ldots, 10$. Clarissa and Marissa start from the center of the first square, jump 9 times to the centers of the other squares so that they visit each square once, and end up at the tenth square. (Jumps forward and backward are allowed.) Each jump of Clarissa was for the same distance as the corresponding jump of Marissa. Does this mean that they both visited the squares in the same order? Alexey Tolpygo

2024 Iran MO (2nd Round), 1

Kimia has a weird clock; the clock's second hand moves 34 or 47 seconds forward instead of each regular second, at random. As an example, if the clock displays the time as $\text{12:23:05}$, the following times could be displayed in this order: $$\text{12:23:39, 12:24:13, 12:25:00, 12:25:34, 12:26:21,\dots}$$ Prove that the clock's second hand would eventually land on a perfect square.