This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 Bulgarian Autumn Math Competition, Problem 8.3

On a circle are given the points $A_1, B_1, A_2, B_2, \cdots, A_9, B_9$ in this order. All the segments $A_iB_j (i, j=1, 2, \cdots, 9$ must be colored in one of $k$ colors, so that no two segments from the same color intersect (inside the circle) and for every $i$ there is a color, such that no segments with an end $A_i$, nor $B_i$ is colored such. What is the least possible $k$?

2002 All-Russian Olympiad, 1

Can the cells of a $2002 \times 2002$ table be filled with the numbers from $1$ to $2002^2$ (one per cell) so that for any cell we can find three numbers $a, b, c$ in the same row or column (or the cell itself) with $a = bc$?

1998 Iran MO (2nd round), 3

If $A=(a_1,\cdots,a_n)$ , $B=(b_1,\cdots,b_n)$ be $2$ $n-$tuple that $a_i,b_i=0 \ or \ 1$ for $i=1,2,\cdots,n$, we define $f(A,B)$ the number of $1\leq i\leq n$ that $a_i\ne b_i$. For instance, if $A=(0,1,1)$ , $B=(1,1,0)$, then $f(A,B)=2$. Now, let $A=(a_1,\cdots,a_n)$ , $B=(b_1,\cdots,b_n)$ , $C=(c_1,\cdots,c_n)$ be 3 $n-$tuple, such that for $i=1,2,\cdots,n$, $a_i,b_i,c_i=0 \ or \ 1$ and $f(A,B)=f(A,C)=f(B,C)=d$. $a)$ Prove that $d$ is even. $b)$ Prove that there exists a $n-$tuple $D=(d_1,\cdots,d_n)$ that $d_i=0 \ or \ 1$ for $i=1,2,\cdots,n$, such that $f(A,D)=f(B,D)=f(C,D)=\frac{d}{2}$.

2004 Tournament Of Towns, 3

Each day, the price of the shares of the corporation “Soap Bubble, Limited” either increases or decreases by $n$ percent, where $n$ is an integer such that $0 < n < 100$. The price is calculated with unlimited precision. Does there exist an $n$ for which the price can take the same value twice?

2016 IFYM, Sozopol, 6

$a,b,m,k\in \mathbb{Z}$, $a,b,m>2,k>1$, for which $k^n a+b$ is an $m$-th power of a natural number for $\forall n\in \mathbb{N}$. Prove that $b$ is an $m$-th power of a non-negative integer.

1992 Romania Team Selection Test, 11

In the Cartesian plane is given a polygon $P$ whose vertices have integer coordinates and with sides parallel to the coordinate axes. Show that if the length of each edge of $P$ is an odd integer, then the surface of P cannot be partitioned into $2\times 1$ rectangles.

2024 IFYM, Sozopol, 1

Find all functions \( f: \mathbb{R}^{+} \to \mathbb{R}^{+} \) such that: \[ f(x^2 + y) = xf(x) + \frac{f(y^2)}{y} \] for any positive real numbers \( x \) and \( y \).

2003 AMC 10, 9

Find the value of $ x$ that satisfies the equation \[ 25^{\minus{}2}\equal{}\frac{5^{48/x}}{5^{26/x}\cdot25^{17/x}}. \]$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9$

1951 AMC 12/AHSME, 3

Tags: geometry
If the length of a diagonal of a square is $ a \plus{} b$, then the area of the square is: $ \textbf{(A)}\ (a \plus{} b)^2 \qquad\textbf{(B)}\ \frac {1}{2}(a \plus{} b)^2 \qquad\textbf{(C)}\ a^2 \plus{} b^2$ $ \textbf{(D)}\ \frac {1}{2}(a^2 \plus{} b^2) \qquad\textbf{(E)}\ \text{none of these}$

2018 Azerbaijan IMO TST, 3

Tags: algebra , function
A sequence of real numbers $a_1,a_2,\ldots$ satisfies the relation $$a_n=-\max_{i+j=n}(a_i+a_j)\qquad\text{for all}\quad n>2017.$$ Prove that the sequence is bounded, i.e., there is a constant $M$ such that $|a_n|\leq M$ for all positive integers $n$.

2016 Purple Comet Problems, 12

Tags:
Find the number of squares such that the sides of the square are segments in the following diagram and where the dot is inside the square. [center][img]https://snag.gy/qXBIY4.jpg[/img][/center]

2009 AMC 10, 22

A cubical cake with edge length $ 2$ inches is iced on the sides and the top. It is cut vertically into three pieces as shown in this top view, where $ M$ is the midpoint of a top edge. The piece whose top is triangle $ B$ contains $ c$ cubic inches of cake and $ s$ square inches of icing. What is $ c\plus{}s$? [asy]unitsize(1cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle); draw((1,1)--(-1,0)); pair P=foot((1,-1),(1,1),(-1,0)); draw((1,-1)--P); draw(rightanglemark((-1,0),P,(1,-1),4)); label("$M$",(-1,0),W); label("$C$",(-0.1,-0.3)); label("$A$",(-0.4,0.7)); label("$B$",(0.7,0.4));[/asy]$ \textbf{(A)}\ \frac{24}{5} \qquad \textbf{(B)}\ \frac{32}{5} \qquad \textbf{(C)}\ 8\plus{}\sqrt5 \qquad \textbf{(D)}\ 5\plus{}\frac{16\sqrt5}{5} \qquad \textbf{(E)}\ 10\plus{}5\sqrt5$

2023 China Northern MO, 2

Let $ a,b,c \in (0,1) $ and $ab+bc+ca=4abc .$ Prove that $$\sqrt{a+b+c}\geq \sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}$$

2020 BAMO, D/2

Tags: asymptote
Here’s a screenshot of the problem. If someone could LaTEX a diagram, that would be great!

2020 Israel National Olympiad, 3

In a convex hexagon $ABCDEF$ the triangles $BDF, ACE$ are equilateral and congruent. Prove that the three lines connecting the midpoints of opposite sides are concurrent.

2014 Abels Math Contest (Norwegian MO) Final, 4

Find all triples $(a, b, c)$ of positive integers for which $\frac{32a + 3b + 48c}{4abc}$ is also an integer.

2023 Purple Comet Problems, 1

Find the sum of the four least positive integers each of whose digits add to $12$.

2005 AMC 8, 23

Isosceles right triangle $ ABC$ encloses a semicircle of area $ 2\pi$. The circle has its center $ O$ on hypotenuse $ \overline{AB}$ and is tangent to sides $ \overline{AC}$ and $ \overline{BC}$. What is the area of triangle $ ABC$? [asy]defaultpen(linewidth(0.8));pair a=(4,4), b=(0,0), c=(0,4), d=(4,0), o=(2,2); draw(circle(o, 2)); clip(a--b--c--cycle); draw(a--b--c--cycle); dot(o); label("$C$", c, NW); label("$A$", a, NE); label("$O$", o, SE); label("$B$", b, SW);[/asy] $ \textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 3\pi\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 4\pi $

2003 AMC 12-AHSME, 6

The second and fourth terms of a geometric sequence are $ 2$ and $ 6$. Which of the following is a possible first term? $ \textbf{(A)}\ \minus{}\!\sqrt3 \qquad \textbf{(B)}\ \minus{}\!\frac{2\sqrt3}{3} \qquad \textbf{(C)}\ \minus{}\!\frac{\sqrt3}{3} \qquad \textbf{(D)}\ \sqrt3 \qquad \textbf{(E)}\ 3$

2020 Iranian Our MO, 4

In a school there are $n$ classes and $k$ student. We know that in this school every two students have attended exactly in one common class. Also due to smallness of school each class has less than $k$ students. If $k-1$ is not a perfect square, prove that there exist a student that has attended in at least $\sqrt k$ classes. [i]Proposed by Mohammad Moshtaghi Far, Kian Shamsaie[/i] [b]Rated 4[/b]

2023 Bulgaria National Olympiad, 3

Let $f(x)$ be a polynomial with positive integer coefficients. For every $n\in\mathbb{N}$, let $a_{1}^{(n)}, a_{2}^{(n)}, \dots , a_{n}^{(n)}$ be fixed positive integers that give pairwise different residues modulo $n$ and let \[g(n) = \sum\limits_{i=1}^{n} f(a_{i}^{(n)}) = f(a_{1}^{(n)}) + f(a_{2}^{(n)}) + \dots + f(a_{n}^{(n)})\] Prove that there exists a constant $M$ such that for all integers $m>M$ we have $\gcd(m, g(m))>2023^{2023}$.

2018 Ukraine Team Selection Test, 8

Tags: function , algebra
A sequence of real numbers $a_1,a_2,\ldots$ satisfies the relation $$a_n=-\max_{i+j=n}(a_i+a_j)\qquad\text{for all}\quad n>2017.$$ Prove that the sequence is bounded, i.e., there is a constant $M$ such that $|a_n|\leq M$ for all positive integers $n$.

2011 Iran MO (3rd Round), 2

In triangle $ABC$, $\omega$ is its circumcircle and $O$ is the center of this circle. Points $M$ and $N$ lie on sides $AB$ and $AC$ respectively. $\omega$ and the circumcircle of triangle $AMN$ intersect each other for the second time in $Q$. Let $P$ be the intersection point of $MN$ and $BC$. Prove that $PQ$ is tangent to $\omega$ iff $OM=ON$. [i]proposed by Mr.Etesami[/i]

2014 PUMaC Geometry B, 7

Tags: geometry
Consider quadrilateral $ABCD$. It is given that $\angle DAC=70^\circ$, $\angle BAC=40^\circ$, $\angle BDC=20^\circ$, $\angle CBD=35^\circ$. Let $P$ be the intersection of $AC$ and $BD$. Find $\angle BPC$.

2023 Assara - South Russian Girl's MO, 7

A parabola is drawn on the coordinate plane - the graph of a square trinomial. The vertices of triangle $ABC$ lie on this parabola so that the bisector of angle $\angle BAC$ is parallel to the axis $Ox$ . Prove that the midpoint of the median drawn from vertex $A$ lies on the axis of the parabola.