This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2014 All-Russian Olympiad, 4

Given a triangle $ABC$ with $AB>BC$, $ \Omega $ is circumcircle. Let $M$, $N$ are lie on the sides $AB$, $BC$ respectively, such that $AM=CN$. $K(.)=MN\cap AC$ and $P$ is incenter of the triangle $AMK$, $Q$ is K-excenter of the triangle $CNK$ (opposite to $K$ and tangents to $CN$). If $R$ is midpoint of the arc $ABC$ of $ \Omega $ then prove that $RP=RQ$. M. Kungodjin

III Soros Olympiad 1996 - 97 (Russia), 11.8

Find any polynomial with integer coefficients, the smallest value of which on the entire line is equal to : a) $-\sqrt2$ b) $\sqrt2$

1997 Spain Mathematical Olympiad, 1

Compute the sum of the squares of the first $100$ terms of an arithmetic progression, given that their sum is $-1$ and that the sum of those among them having an even index is $1$.

2010 AMC 12/AHSME, 16

Tags: probability
Positive integers $ a,b,$ and $ c$ are randomly and independently selected with replacement from the set $ \{ 1,2,3,\dots,2010 \}.$ What is the probability that $ abc \plus{} ab \plus{} a$ is divisible by $ 3$? $ \textbf{(A)}\ \dfrac{1}{3} \qquad\textbf{(B)}\ \dfrac{29}{81} \qquad\textbf{(C)}\ \dfrac{31}{81} \qquad\textbf{(D)}\ \dfrac{11}{27} \qquad\textbf{(E)}\ \dfrac{13}{27}$

2010 All-Russian Olympiad, 4

In a board school, there are 9 subjects, 512 students, and 256 rooms (two people in each room.) For every student there is a set (a subset of the 9 subjects) of subjects the student is interested in. Each student has a different set of subjects, (s)he is interested in, from all other students. (Exactly one student has no subjects (s)he is interested in.) Prove that the whole school can line up in a circle in such a way that every pair of the roommates has the two people standing next to each other, and those pairs of students standing next to each other that are not roommates, have the following properties. One of the two students is interested in all the subjects that the other student is interested in, and also exactly one more subject.

2009 Brazil National Olympiad, 1

Prove that there exists a positive integer $ n_0$ with the following property: for each integer $ n \geq n_0$ it is possible to partition a cube into $ n$ smaller cubes.

1996 Greece National Olympiad, 3

Prove that among $81$ natural numbers whose prime divisors are in the set $\{2, 3, 5\}$ there exist four numbers whose product is the fourth power of an integer.

2012 USAMO, 4

Find all functions $f:\mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ (where $\mathbb{Z}^+$ is the set of positive integers) such that $f(n!) = f(n)!$ for all positive integers $n$ and such that $m-n$ divides $f(m) - f(n)$ for all distinct positive integers $m, n$.

2000 Saint Petersburg Mathematical Olympiad, 10.6

One of the excircles of triangle $ABC$ is tangent to the side $AB$ and to the extensions of sides $CA$ and $CB$ at points $C_1$, $B_1$ and $A_1$ respectively. Another excircle is tangent to side $AB$ and to the extensions of sides $BA$ and $BC$ at points $B_2$, $C_2$ and $A_2$ respectively. Line $A_1B_1$ and $A_2B_2$ intersect at point $P$,. lines $A_1C_1$ and $A_2C_2$ intersect at point $Q$. Prove that the points $A$, $P$, $Q$ are collinear [I]Proposed by S. Berlov[/i]

1987 Swedish Mathematical Competition, 5

Show that there exists a positive number t such that for all positive numbers $a,b,c,d$ with $abcd = 1$, $$\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}> t.$$ and find the largest $t$ with this property.

2013 Stanford Mathematics Tournament, 4

Tags:
What is the smallest number over 9000 that is divisible by the first four primes?

2016 District Olympiad, 1

A ring $ A $ has property [i](P),[/i] if $ A $ is finite and there exists $ (\{ 0\}\neq R,+)\le (A,+) $ such that $ (U(A),\cdot )\cong (R,+) . $ Show that: [b]a)[/b] If a ring has property [i](P),[/i] then, the number of its elements is even. [b]b)[/b] There are infinitely many rings of distinct order that have property [i](P).[/i]

1958 AMC 12/AHSME, 18

Tags: geometry
The area of a circle is doubled when its radius $ r$ is increased by $ n$. Then $ r$ equals: $ \textbf{(A)}\ n(\sqrt{2} \plus{} 1)\qquad \textbf{(B)}\ n(\sqrt{2} \minus{} 1)\qquad \textbf{(C)}\ n\qquad \textbf{(D)}\ n(2 \minus{} \sqrt{2})\qquad \textbf{(E)}\ \frac{n\pi}{\sqrt{2} \plus{} 1}$

2014 Cezar Ivănescu, 1

Let $ S $ be a nonempty subset of a finite group $ G, $ and $ \left( S^j \right)_{j\ge 1} $ be a sequence of sets defined as $ S^j=\left.\left\{\underbrace{xy\cdots z}_{\text{j terms}} \right| \underbrace{x,y,\cdots ,z}_{\text{j terms}} \in S \right\} . $ Prove that: [b]a)[/b] $ \exists i_0\in\mathbb{N}^*\quad i\ge i_0\implies \left| S^i\right| =\left| S^{1+i}\right| $ [b]b)[/b] $ S^{|G|}\le G $

2024 Mongolian Mathematical Olympiad, 2

We call a triangle consisting of three vertices of a pentagon [i]big[/i] if it's area is larger than half of the pentagon's area. Find the maximum number of [i]big[/i] triangles that can be in a convex pentagon. [i]Proposed by Gonchigdorj Sandag[/i]

1995 Poland - First Round, 1

Tags: trigonometry
Determine all positive integers $n$, such that the equation $2 \sin nx = \tan x + \cot x$ has solutions in real numbers $x$.

1980 IMO, 5

Let $A_1A_2A_3$ be a triangle and, for $1 \leq i \leq 3$, let $B_i$ be an interior point of edge opposite $A_i$. Prove that the perpendicular bisectors of $A_iB_i$ for $1 \leq i \leq 3$ are not concurrent.

2021 AMC 12/AHSME Fall, 6

Tags:
The largest prime factor of $16384$ is $2$, because $16384 = 2^{14}$. What is the sum of the digits of the largest prime factor of $16383$? $\textbf{(A) }3\qquad\textbf{(B) }7\qquad\textbf{(C) }10\qquad\textbf{(D) }16\qquad\textbf{(E) }22$

1955 AMC 12/AHSME, 24

Tags: function
The function $ 4x^2\minus{}12x\minus{}1$: $ \textbf{(A)}\ \text{always increases as }x\text{ increases}\\ \textbf{(B)}\ \text{always decreases as }x\text{ decreases to 1} \\ \textbf{(C)}\ \text{cannot equal 0} \\ \textbf{(D)}\ \text{has a maximum value when }x\text{ is negative} \\ \textbf{(E)}\ \text{has a minimum value of \minus{}10}$

2010 China Western Mathematical Olympiad, 5

Let $k$ be an integer and $k > 1$. Define a sequence $\{a_n\}$ as follows: $a_0 = 0$, $a_1 = 1$, and $a_{n+1} = ka_n + a_{n-1}$ for $n = 1,2,...$. Determine, with proof, all possible $k$ for which there exist non-negative integers $l,m (l \not= m)$ and positive integers $p,q$ such that $a_l + ka_p = a_m + ka_q$.

2024 Saint Petersburg Mathematical Olympiad, 4

The coach lined up $200$ volleyball players and gave them $m$ balls (each volleyball player could get any number of balls). From time to time, one of the volleyball players throws the ball to another (and he catches it). After a while, it turned out that of any two volleyball players, the left one threw the ball to the right exactly twice, and the right one to the left exactly once. For which minimum $m$ is this possible?

2006 Iran MO (2nd round), 1

[b]a.)[/b] Let $m>1$ be a positive integer. Prove there exist finite number of positive integers $n$ such that $m+n|mn+1$. [b]b.)[/b] For positive integers $m,n>2$, prove that there exists a sequence $a_0,a_1,\cdots,a_k$ from positive integers greater than $2$ that $a_0=m$, $a_k=n$ and $a_i+a_{i+1}|a_ia_{i+1}+1$ for $i=0,1,\cdots,k-1$.

2024 AMC 12/AHSME, 4

Tags: factorial
What is the least value of $n$ such that $n!$ is a multiple of $2024$? $ \textbf{(A) }11 \qquad \textbf{(B) }21 \qquad \textbf{(C) }22 \qquad \textbf{(D) }23 \qquad \textbf{(E) }253 \qquad $

2019 Jozsef Wildt International Math Competition, W. 18

Tags: sequence , limit
Let $\{c_k\}_{k\geq1}$ be a sequence with $0 \leq c_k \leq 1$, $c_1 \neq 0$, $\alpha > 1$. Let $C_n = c_1 + \cdots + c_n$. Prove $$\lim \limits_{n \to \infty}\frac{C_1^{\alpha}+\cdots+C_n^{\alpha}}{\left(C_1+\cdots +C_n\right)^{\alpha}}=0$$

1976 IMO Longlists, 49

Determine whether there exist $1976$ nonsimilar triangles with angles $\alpha, \beta, \gamma,$ each of them satisfying the relations \[\frac{\sin \alpha + \sin\beta + \sin\gamma}{\cos \alpha + \cos \beta + \cos \gamma}=\frac{12}{7}\text{ and }\sin \alpha \sin \beta \sin \gamma =\frac{12}{25}\]