This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 F = ma, 16

A rod moves freely between the horizontal floor and the slanted wall. When the end in contact with the floor is moving at v, what is the speed of the end in contact with the wall? $\textbf{(A)} v\frac{\sin{\theta}}{\cos(\alpha-\theta)}$ $\textbf{(B)}v\frac{\sin(\alpha - \theta)}{\cos(\alpha + \theta)} $ $\textbf{(C)}v\frac{\cos(\alpha - \theta)}{\sin(\alpha + \theta)}$ $\textbf{(D)}v\frac{\cos(\theta)}{\cos(\alpha - \theta)}$ $\textbf{(E)}v\frac{\sin(\theta)}{\cos(\alpha + \theta)}$

2003 National High School Mathematics League, 2

Let the lengths of three sides of a triangle be $l, m, n(l>m>n)$. If $\left\{\frac{3^l}{10^4}\right\}=\left\{\frac{3^m}{10^4}\right\}=\left\{\frac{3^n}{10^4}\right\}$, find the minimum value of the perimeter of the triangle. Note: $\{x\}=x-[x]$ and $[x]$ denotes the integral part of number $x$.

2015 Abels Math Contest (Norwegian MO) Final, 3

The five sides of a regular pentagon are extended to lines $\ell_1, \ell_2, \ell_3, \ell_4$, and $\ell_5$. Denote by $d_i$ the distance from a point $P$ to $\ell_i$. For which point(s) in the interior of the pentagon is the product $d_1d_2d_3d_4d_5$ maximal?

2015 Iran Team Selection Test, 1

Tags: inequalities
$a,b,c,d$ are positive numbers such that $\sum_{cyc} \frac{1}{ab} =1$. Prove that : $abcd+16 \geq 8 \sqrt{(a+c)(\frac{1}{a} + \frac{1}{c})}+8\sqrt{(b+d)(\frac{1}{b}+\frac{1}{d})}$

1997 Federal Competition For Advanced Students, P2, 5

We define the following operation which will be applied to a row of bars being situated side-by-side on positions $ 1,2,...,N$. Each bar situated at an odd numbered position is left as is, while each bar at an even numbered position is replaced by two bars. After that, all bars will be put side-by-side in such a way that all bars form a new row and are situated on positions $ 1,...,M.$ From an initial number $ a_0>0$ of bars there originates a sequence $ (a_n)_{n \ge 0},$ where $ a_n$ is the number of bars after having applied the operation $ n$ times. $ (a)$ Prove that for no $ n>0$ can we have $ a_n\equal{}1997.$ $ (b)$ Determine all natural numbers that can only occur as $ a_0$ or $ a_1$.

2022 CMIMC, 5

Tags: team
For any integer $a$, let $f(a) = |a^4 - 36a^2 + 96a - 64|$. What is the sum of all values of $f(a)$ that are prime? [i]Proposed by Alexander Wang[/i]

2012 Princeton University Math Competition, A6

Let $p_1 = 2012$ and $p_n = 2012^{p_{n-1}}$ for $n > 1$. Find the largest integer $k$ such that $p_{2012}- p_{2011}$ is divisible by $2011^k$.

2010 Putnam, A1

Given a positive integer $n,$ what is the largest $k$ such that the numbers $1,2,\dots,n$ can be put into $k$ boxes so that the sum of the numbers in each box is the same? [When $n=8,$ the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest $k$ is [i]at least[/i] 3.]

2023 Brazil National Olympiad, 2

Consider a triangle $ABC$ with $AB < AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. A line starting from $B$ cuts the lines $AO$ and $AH$ at $M$ and $M'$ so that $M'$ is the midpoint of $BM$. Another line starting from $C$ cuts the lines $AH$ and $AO$ at $N$ and $N'$ so that $N'$ is the midpoint of $CN$. Prove that $M, M', N, N'$ are on the same circle.

2014 India Regional Mathematical Olympiad, 2

Tags: inequalities
Find all real $x,y$ such that \[x^2 + 2y^2 + \frac{1}{2} \le x(2y+1) \]

2016 Postal Coaching, 3

Call a non-constant polynomial [i]real[/i] if all its coecients are real. Let $P$ and $Q$ be polynomials with complex coefficients such that the composition $P \circ Q$ is real. Show that if the leading coefficient of $Q$ and its constant term are both real, then $P$ and $Q$ are real.

2022 IMO Shortlist, G2

In the acute-angled triangle $ABC$, the point $F$ is the foot of the altitude from $A$, and $P$ is a point on the segment $AF$. The lines through $P$ parallel to $AC$ and $AB$ meet $BC$ at $D$ and $E$, respectively. Points $X \ne A$ and $Y \ne A$ lie on the circles $ABD$ and $ACE$, respectively, such that $DA = DX$ and $EA = EY$. Prove that $B, C, X,$ and $Y$ are concyclic.

1952 Moscow Mathematical Olympiad, 222

a) Solve the system of equations $\begin{cases} 1 - x_1x_2 = 0 \\ 1 - x_2x_3 = 0 \\ ...\\ 1 - x_{14}x_{15} = 0 \\ 1 - x_{15}x_1 = 0 \end{cases}$ b) Solve the system of equations $\begin{cases} 1 - x_1x_2 = 0 \\ 1 - x_2x_3 = 0 \\ ...\\ 1 - x_{n-1}x_{n} = 0 \\ 1 - x_{n}x_1 = 0 \end{cases}$ How does the solution vary for distinct values of $n$?

1983 Miklós Schweitzer, 7

Prove that if the function $ f : \mathbb{R}^2 \rightarrow [0,1]$ is continuous and its average on every circle of radius $ 1$ equals the function value at the center of the circle, then $ f$ is constant. [i]V. Totik[/i]

1982 All Soviet Union Mathematical Olympiad, 330

A nonnegative real number is written at every cube's vertex. The sum of those numbers equals to $1$. Two players choose in turn faces of the cube, but they cannot choose the face parallel to already chosen one (the first moves twice, the second -- once). Prove that the first player can provide the number, at the common for three chosen faces vertex, to be not greater than $1/6$.

1979 Chisinau City MO, 174

Prove that for any odd number $a$ there exists an integer $b$ such that $2^b-1$ is divisible by $a$.

2017 AMC 8, 7

Tags:
Let $Z$ be a 6-digit positive integer, such as 247247, whose first three digits are the same as its last three digits taken in the same order. Which of the following numbers must also be a factor of $Z$? $\textbf{(A) }11\qquad\textbf{(B) }19\qquad\textbf{(C) }101\qquad\textbf{(D) }111\qquad\textbf{(E) }1111$

LMT Accuracy Rounds, 2023 S4

Tags: geometry
Rectangle $ABCD$ has side lengths $AB = 3$ and $BC = 7$. Let $E$ be a point on $BC$, and let $F$ be the intersection of $DE$ and $AC$. Given that $[CDF] = 4$, find $\frac{DF}{FE}$ .

1990 AMC 8, 21

Tags:
A list of $8$ numbers is formed by beginning with two given numbers. Each new number in the list is the product of the two previous numbers. Find the first number if the last three are shown: \[ \text{\underline{\hspace{3 mm}?\hspace{3 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{7 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{2 mm}16\hspace{2 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{2 mm}64\hspace{2 mm}}\hspace{1 mm},\hspace{1 mm}\underline{\hspace{1 mm}1024\hspace{1 mm}}} \] $ \text{(A)}\ \frac{1}{64}\qquad\text{(B)}\ \frac{1}{4}\qquad\text{(C)}\ 1\qquad\text{(D)}\ 2\qquad\text{(E)}\ 4 $

2000 Italy TST, 1

Determine all triples $(x,y,z)$ of positive integers such that \[\frac{13}{x^2}+\frac{1996}{y^2}=\frac{z}{1997} \]

Gheorghe Țițeica 2025, P2

Let $n\geq 2$ and $A,B\in\mathcal{M}_n(\mathbb{C})$ such that $$\{\text{rank}(A^k)\mid k\geq 1\}=\{\text{rank}(B^k)\mid k\geq 1\}.$$ Prove that $\text{rank}(A^k)=\text{rank}(B^k)$ for all $k\geq 1$. [i]Cristi Săvescu[/i]

2016 CMIMC, 8

Consider the sequence of sets defined by $S_0=\{0,1\},S_1=\{0,1,2\}$, and for $n\ge2$, \[S_n=S_{n-1}\cup\{2^n+x\mid x\in S_{n-2}\}.\] For example, $S_2=\{0,1,2\}\cup\{2^2+0,2^2+1\}=\{0,1,2,4,5\}$. Find the $200$th smallest element of $S_{2016}$.

2004 All-Russian Olympiad, 1

Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.

1977 AMC 12/AHSME, 29

Tags:
Find the smallest integer $n$ such that \[(x^2+y^2+z^2)^2\le n(x^4+y^4+z^4)\] for all real numbers $x,y,$ and $z$. $\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }4\qquad\textbf{(D) }6\qquad \textbf{(E) }\text{There is no such integer }n.$

2014 India IMO Training Camp, 2

Find all positive integers $x$ and $y$ such that $x^{x+y}=y^{3x}$.