Found problems: 85335
2019 ELMO Shortlist, A2
Find all functions $f:\mathbb Z\to \mathbb Z$ such that for all surjective functions $g:\mathbb Z\to \mathbb Z$, $f+g$ is also surjective. (A function $g$ is surjective over $\mathbb Z$ if for all integers $y$, there exists an integer $x$ such that $g(x)=y$.)
[i]Proposed by Sean Li[/i]
2004 Germany Team Selection Test, 1
Each positive integer $a$ undergoes the following procedure in order to obtain the number $d = d\left(a\right)$:
(i) move the last digit of $a$ to the first position to obtain the numb er $b$;
(ii) square $b$ to obtain the number $c$;
(iii) move the first digit of $c$ to the end to obtain the number $d$.
(All the numbers in the problem are considered to be represented in base $10$.) For example, for $a=2003$, we get $b=3200$, $c=10240000$, and $d = 02400001 = 2400001 = d(2003)$.)
Find all numbers $a$ for which $d\left( a\right) =a^2$.
[i]Proposed by Zoran Sunic, USA[/i]
2017 ASDAN Math Tournament, 23
Ben creates an $8\times8$ grid of coins, where each coin faces heads with probability $\tfrac{1}{2}$, and tails with probability $\tfrac{1}{2}$. Ben then makes a series of moves; each move consists of selecting a coin in the grid and flipping over all coins in the same row and column as the selected coin. Suppose that in Benās current grid of coins, it is possible to make a series of moves so that all coins in the grid are heads, and that Ben will make the fewest number of moves to do so. What is the expected number of moves that Ben makes?
2019 Novosibirsk Oral Olympiad in Geometry, 3
Equal line segments are marked in triangle $ABC$. Find its angles.
[img]https://cdn.artofproblemsolving.com/attachments/0/2/bcb756bba15ba57013f1b6c4cbe9cc74171543.png[/img]
2021 IMO, 5
Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a sequence of 2021 moves. In the $k$-th move, Jumpy swaps the positions of the two walnuts adjacent to walnut $k$.
Prove that there exists a value of $k$ such that, on the $k$-th move, Jumpy swaps some walnuts $a$ and $b$ such that $a<k<b$.
2023 Caucasus Mathematical Olympiad, 3
The numbers $1, 2, 3,\ldots, 2\underbrace{00\ldots0}_{100 \text{ zeroes}}2$ are written on the board. Is it possible to paint half of them red and remaining ones blue, so that the sum of red numbers is divisible by the sum of blue ones?
1985 IMO Longlists, 90
Factorise $ 5^{1985}\minus{}1$ as a product of three integers, each greater than $ 5^{100}$.
III Soros Olympiad 1996 - 97 (Russia), 11.5
The area of a convex quadrilateral is $S$, and the angle between the diagonals is $a$. On the sides of this quadrilateral, as on the bases, isosceles triangles with vertex angle equal to $\phi$, wherein two opposite triangles are located on the other side of the corresponding side of the quadrilateral than the quadrilateral itself, and the other two are located on the other side. Prove that the vertices of the constructed triangles, different from the vertices of the quadrilateral, serve as the vertices of a parallelogram. Find the area of this parallelogram.
2022 Iran Team Selection Test, 6
Let $m,n$ and $a_1,a_2,\dots,a_m$ be arbitrary positive integers. Ali and Mohammad Play the following game. At each step, Ali chooses $b_1,b_2,\dots,b_m \in \mathbb{N}$ and then Mohammad chosses a positive integers $s$ and obtains a new sequence $\{c_i=a_i+b_{i+s}\}_{i=1}^m$, where $$b_{m+1}=b_1,\ b_{m+2}=b_2, \dots,\ b_{m+s}=b_s$$ The goal of Ali is to make all the numbers divisible by $n$ in a finite number of steps. FInd all positive integers $m$ and $n$ such that Ali has a winning strategy, no matter how the initial values $a_1, a_2,\dots,a_m$ are.
[hide=clarification] after we create the $c_i$ s, this sequence becomes the sequence that we continue playing on, as in it is our 'new' $a_i$[/hide]
Proposed by Shayan Gholami
2025 Taiwan TST Round 2, N
Find all prime number pairs $(p, q)$ such that \[p^q+q^p+p+q-5pq\] is a perfect square.
[i]Proposed by chengbilly[/i]
2016 Bundeswettbewerb Mathematik, 1
There are $\tfrac{n(n+1)}{2}$ distinct sums of two distinct numbers, if there are $n$ numbers.
For which $n \ (n \geq 3)$ do there exist $n$ distinct integers, such that those sums are $\tfrac{n(n-1)}{2}$ consecutive numbers?
2023 BMT, Tie 4
Let $N = 2^{18} \cdot 3^{19} \cdot5^{20} \cdot7^{21} \cdot 11^{22}$. Compute the number of positive integer divisors of $N$ whose units digit is $7$.
2021 Romanian Master of Mathematics Shortlist, A3
A [i]tile[/i] $T$ is a union of finitely many pairwise disjoint arcs of a unit circle $K$. The [i]size[/i] of $T$,
denoted by $|T|$, is the sum of the lengths of the arcs $T$ consists of, divided by $2\pi$. A [i]copy[/i] of $T$ is
a tile $T'$ obtained by rotating $T$ about the centre of $K$ through some angle. Given a positive
real number $\varepsilon < 1$, does there exist an infinite sequence of tiles $T_1,T_2,\ldots,T_n,\ldots$ satisfying the following two conditions simultaneously:
1) $|T_n| > 1 - \varepsilon$ for all $n$;
2) The union of all $T_n'$ (as $n$ runs through the positive integers) is a proper subset of $K$ for any choice of the copies $T_1'$, $T_2'$, $\ldots$, $T_n', \ldots$?
[hide=Note] In the extralist the problem statement had the clause "three conditions" rather than two, but only two are presented, the ones you see. I am quite confident this is a typo or that the problem might have been reformulated after submission.[/hide]
1997 Brazil National Olympiad, 5
Let $f(x)= x^2-C$ where $C$ is a rational constant.
Show that exists only finitely many rationals $x$ such that $\{x,f(x),f(f(x)),\ldots\}$ is finite
2023 USA TSTST, 3
Find all positive integers $n$ for which it is possible to color some cells of an infinite grid of unit squares red, such that each rectangle consisting of exactly $n$ cells (and whose edges lie along the lines of the grid) contains an odd number of red cells.
[i]Proposed by Merlijn Staps[/i]
2007 Estonia Math Open Junior Contests, 10
Prove that for every integer $k$, there exists a integer $n$ which can be expressed in at least $k$ different ways as the sum of a number of squares of integers (regardless of the order of additions) where the additions are all in different pairs.
2023 South East Mathematical Olympiad, 6
Let $R[x]$ be the whole set of real coefficient polynomials, and define the mapping $T: R[x] \to R[x]$ as follows: For $$f (x) = a_nx^{n} + a_{n-1}x^{n- 1} +...+ a_1x + a_0,$$ let $$T(f(x))=a_{n}x^{n+1} + a_{n-1}x^{n} + (a_n+a_{n-2})x^{n-1 } + (a_{n-1}+a_{n-3})x^{n-2}+...+(a_2+a_0)x+a_1.$$ Assume $P_0(x)= 1$, $P_n(x) = T(P_{n-1}(x))$ ( $n=1,2,...$), find the constant term of $P_n(x)$.
2024 Iran MO (2nd Round), 1
In the triangle $ABC$, $M$ is the midpoint of $AB$ and $B'$ is the foot of $B$-altitude. $CB'M$ intersects the line $BC$ for the second time at $D$. Circumcircles of $CB'M$ and $ABD$ intersect each other again at $K$. The parallel to $AB$ through $C$ intersects the $CB'M$ circle again at $L$. Prove that $KL$ cuts $CM$ in half.
2012 Pre-Preparation Course Examination, 1
Suppose that $X$ and $Y$ are two metric spaces and $f:X \longrightarrow Y$ is a continious function. Also for every compact set $K \subseteq Y$, it's pre-image $f^{pre}(K)$ is a compact set in $X$. Prove that $f$ is a closed function, i.e for every close set $C\subseteq X$, it's image $f(C)$ is a closed subset of $Y$.
2016 India PRMO, 14
Find the minimum value of $m$ such that any $m$-element subset of the set of integers $\{1,2,...,2016\}$ contains at least two distinct numbers $a$ and $b$ which satisfy $|a - b|\le 3$.
2011 Irish Math Olympiad, 1
Suppose $abc\neq 0$. Express in terms of $a,b,$ and $c$ the solutions $x,y,z,u,v,w$ of the equations $$x+y=a,\quad z+u=b,\quad v+w=c,\quad ay=bz,\quad ub=cv,\quad wc=ax.\quad$$
2011 Saudi Arabia IMO TST, 2
Let $ABC$ be a non-isosceles triangle with circumcenter $O$, inĀcenter $I$, and orthocenter $H$. Prove that angle $\angle OIH$ is obtuse.
2008 Irish Math Olympiad, 3
Find $ a_3,a_4,...,a{}_2{}_0{}_0{}_8$, such that $ a_i =\pm1$ for $ i=3,...,2008$ and
$ \sum\limits_{i=3}^{2008} a_i2^i = 2008$
and show that the numbers $ a_3,a_4,...,a_{2008}$ are uniquely determined by these conditions.
Kettering MO, 2009
[b]p1.[/b] Prove that if $a, b, c, d$ are real numbers, then $$\max \{a + c, b + d\} \le \max \{a, b\} + \max \{c, d\}$$
[b]p2.[/b] Find the smallest positive integer whose digits are all ones which is divisible by $3333333$.
[b]p3.[/b] Find all integer solutions of the equation $\sqrt{x} +\sqrt{y} =\sqrt{2560}$.
[b]p4.[/b] Find the irrational number: $$A =\sqrt{ \frac12+\frac12 \sqrt{\frac12+\frac12 \sqrt{ \frac12 +...+ \frac12 \sqrt{ \frac12}}}}$$ ($n$ square roots).
[b]p5.[/b] The Math country has the shape of a regular polygon with $N$ vertexes. $N$ airports are located on the vertexes of that polygon, one airport on each vertex. The Math Airlines company decided to build $K$ additional new airports inside the polygon. However the company has the following policies:
(i) it does not allow three airports to lie on a straight line,
(ii) any new airport with any two old airports should form an isosceles triangle.
How many airports can be added to the original $N$?
[b]p6.[/b] The area of the union of the $n$ circles is greater than $9$ m$^2$(some circles may have non-empty intersections). Is it possible to choose from these $n$ circles some number of non-intersecting circles with total area greater than $1$ m$^2$?
PS. You should use hide for answers.
2022 CMIMC, 2.6 1.3
Find the smallest positive integer $N$ such that each of the $101$ intervals $$[N^2, (N+1)^2), [(N+1)^2, (N+2)^2), \cdots, [(N+100)^2, (N+101)^2)$$ contains at least one multiple of $1001.$
[i]Proposed by Kyle Lee[/i]