Found problems: 85335
1962 All Russian Mathematical Olympiad, 013
Given points $A' ,B' ,C' ,D',$ on the extension of the $[AB], [BC], [CD], [DA]$ sides of the convex quadrangle $ABCD$, such, that the following pairs of vectors are equal: $$[BB']=[AB], [CC']=[BC], [DD']=[CD], [AA']=[DA].$$ Prove that the quadrangle $A'B'C'D'$ area is five times more than the quadrangle $ABCD$ area.
2019 Harvard-MIT Mathematics Tournament, 6
A point $P$ lies at the center of square $ABCD$. A sequence of points $\{P_n\}$ is determined by $P_0 = P$, and given point $P_i$, point $P_{i+1}$ is obtained by reflecting $P_i$ over one of the four lines $AB$, $BC$, $CD$, $DA$, chosen uniformly at random and independently for each $i$. What is the probability that $P_8 = P$?
2011 Cono Sur Olympiad, 1
Find all triplets of positive integers $(x,y,z)$ such that $x^{2}+y^{2}+z^{2}=2011$.
2003 Austria Beginners' Competition, 1
For the real numbers $x$ and $y$, $[\sqrt{x}] = 10$ and $[\sqrt{y}] =14$.
How large is $\left[\sqrt{[ \sqrt{x+y} ]}\right]$ ?
(Note: the square roots are the positive values and $[x]$ is the largest integer less than or equal to x.)
1980 VTRMC, 5
For $x>0,$ show that $e^x < (1+x)^{1+x}.$
V Soros Olympiad 1998 - 99 (Russia), 10.8
It is known that for all $x$ such that $|x| < 1$, the following inequality holds $$ax^2+bx+c\le \frac{1}{\sqrt{1-x^2}}$$Find the greatest value of $a + 2c$.
2009 Puerto Rico Team Selection Test, 1
A positive integer is called [i]good [/i] if it can be written as the sum of two distinct integer squares. A positive integer is called [i]better [/i]if it can be written in at least two was as the sum of two integer squares. A positive integer is called [i]best [/i] if it can be written in at least four ways as the sum of two distinct integer squares.
a) Prove that the product of two good numbers is good.
b) Prove that $ 5$ is good, $ 2005$ is better, and $ 2005^2$ is best.
2013 NIMO Problems, 6
Tom has a scientific calculator. Unfortunately, all keys are broken except for one row: 1, 2, 3, + and -.
Tom presses a sequence of $5$ random keystrokes; at each stroke, each key is equally likely to be pressed. The calculator then evaluates the entire expression, yielding a result of $E$. Find the expected value of $E$.
(Note: Negative numbers are permitted, so 13-22 gives $E = -9$. Any excess operators are parsed as signs, so -2-+3 gives $E=-5$ and -+-31 gives $E = 31$. Trailing operators are discarded, so 2++-+ gives $E=2$. A string consisting only of operators, such as -++-+, gives $E=0$.)
[i]Proposed by Lewis Chen[/i]
2000 China Team Selection Test, 2
[b]a.)[/b] Let $a,b$ be real numbers. Define sequence $x_k$ and $y_k$ such that
\[x_0 = 1, y_0 = 0, x_{k+1} = a \cdot x_k - b \cdot y_l, \quad y_{k+1} = x_k - a \cdot y_k \text{ for } k = 0,1,2, \ldots \]
Prove that
\[x_k = \sum^{[k/2]}_{l=0} (-1)^l \cdot a^{k - 2 \cdot l} \cdot \left(a^2 + b \right)^l \cdot \lambda_{k,l}\]
where $\lambda_{k,l} = \sum^{[k/2]}_{m=l} \binom{k}{2 \cdot m} \cdot \binom{m}{l}$
[b]b.)[/b] Let $u_k = \sum^{[k/2]}_{l=0} \lambda_{k,l} $. For positive integer $m,$ denote the remainder of $u_k$ divided by $2^m$ as $z_{m,k}$. Prove that $z_{m,k},$ $k = 0,1,2, \ldots$ is a periodic function, and find the smallest period.
2019 Indonesia MO, 1
Given that $n$ and $r$ are positive integers.
Suppose that
\[ 1 + 2 + \dots + (n - 1) = (n + 1) + (n + 2) + \dots + (n + r) \]
Prove that $n$ is a composite number.
2018 Polish MO Finals, 1
An acute triangle $ABC$ in which $AB<AC$ is given. The bisector of $\angle BAC$ crosses $BC$ at $D$. Point $M$ is the midpoint of $BC$. Prove that the line though centers of circles escribed on triangles $ABC$ and $ADM$ is parallel to $AD$.
2024 Simon Marais Mathematical Competition, A2
A positive integer $n$ is [i] tripariable [/i] if it is possible to partition the set $\{1, 2, \dots, n\}$ into disjoint pairs such that the sum of two elements in each pair is a power of $3$. For example $6$ is tripariable because $\{1, 2, \dots, n\}=\{1,2\}\cup\{3,6\}\cup\{4,5\}$ and $$1+2=3^1,\quad 3+6 = 3^2\quad\text{and}\quad4+5=3^2$$ are all powers of 3.
How many positive integers less than or equal to 2024 are tripariable?
2009 Sharygin Geometry Olympiad, 4
Three parallel lines $d_a, d_b, d_c$ pass through the vertex of triangle $ABC$. The reflections of $d_a, d_b, d_c$ in $BC, CA, AB$ respectively form triangle $XYZ$. Find the locus of incenters of such triangles.
(C.Pohoata)
1986 Poland - Second Round, 5
Prove that if the polynomial $ f $ which is not identical to zero satisfies for every real $ x $ the equality $$ f(x)f(x + 3) = f(x^2 + x + 3), $$then it has no real roots .
1993 Baltic Way, 14
A square is divided into $16$ equal squares, obtaining the set of $25$ different vertices. What is the least number of vertices one must remove from this set, so that no $4$ points of the remaining set are the vertices of any square with sides parallel to the sides of the initial square?
2023-24 IOQM India, 21
For $n \in \mathbb{N}$, consider non-negative valued functions $f$ on $\{1,2, \cdots , n\}$ satisfying $f(i) \geqslant f(j)$ for $i>j$ and $\sum_{i=1}^{n} (i+ f(i))=2023.$ Choose $n$ such that $\sum_{i=1}^{n} f(i)$ is at least. How many such functions exist in that case?
2013 Hanoi Open Mathematics Competitions, 2
The smallest value of the function $f(x) =|x| +\left|\frac{1 - 2013x}{2013 - x}\right|$ where $x \in [-1, 1] $ is:
(A): $\frac{1}{2012}$, (B): $\frac{1}{2013}$, (C): $\frac{1}{2014}$, (D): $\frac{1}{2015}$, (E): None of the above.
1940 Putnam, A4
Let $p$ be a real constant. The parabola $y^2=-4px$ rolls without slipping around the parabola $y^2=4px$. Find the equation of the locus of the vertex of the rolling parabola.
2002 All-Russian Olympiad, 4
A hydra consists of several heads and several necks, where each neck joins two heads. When a hydra's head $A$ is hit by a sword, all the necks from head $A$ disappear, but new necks grow up to connect head $A$ to all the heads which weren't connected to $A$. Heracle defeats a hydra by cutting it into two parts which are no joined. Find the minimum $N$ for which Heracle can defeat any hydra with $100$ necks by no more than $N$ hits.
2014 Singapore MO Open, 1
The quadrilateral ABCD is inscribed in a circle which has diameter BD. Points A’ and B’ are symmetric to A and B with respect to the line BD and AC respectively. If the lines A’C, BD intersect at P and AC, B’D intersect at Q, prove that PQ is perpendicular to AC.
2007 Estonia National Olympiad, 3
The headteacher wants to hire a certain number of new teachers in addition to existing teachers. If he hired an additional $10$ teachers, the number of school students would be reduced number per teacher by $5$. However, if the headmaster hired $20$ new teachers, the number of students per teacher would be reduced by $8$. How many students and how many there are teachers in this school?
[img]https://cdn.artofproblemsolving.com/attachments/2/8/c0157ff43fd3d92138c87556a0fca2414e8a3f.png[/img]
2019 Irish Math Olympiad, 8
Consider a point $G$ in the interior of a parallelogram $ABCD$. A circle $\Gamma$ through $A$ and $G$ intersects the sides $AB$ and $AD$ for the second time at the points $E$ and $F$ respectively. The line $FG$ extended intersects the side $BC$ at $H$ and the line $EG$ extended intersects the side $CD$ at $I$. The circumcircle of triangle $HGI$ intersects the circle $\Gamma$ for the second time at $M \ne G$. Prove that $M$ lies on the diagonal $AC$.
2017 IFYM, Sozopol, 6
Find all functions $f: \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$, for which
$f(k+1)>f(f(k)) \quad \forall k \geq 1$.
2012 All-Russian Olympiad, 4
The positive real numbers $a_1,\ldots ,a_n$ and $k$ are such that $a_1+\cdots +a_n=3k$, $a_1^2+\cdots +a_n^2=3k^2$ and $a_1^3+\cdots +a_n^3>3k^3+k$. Prove that the difference between some two of $a_1,\ldots,a_n$ is greater than $1$.
2023 MOAA, 9
Let $ABCD$ be a trapezoid with $AB \parallel CD$ and $BC \perp CD$. There exists a point $P$ on $BC$ such that $\triangle{PAD}$ is equilateral. If $PB = 20$ and $PC = 23$, the area of $ABCD$ can be expressed in the form $\frac{a\sqrt{b}}{c}$ where $b$ is square-free and $a$ and $c$ are relatively prime. Find $a+b+c$.
[i]Proposed by Andy Xu[/i]