This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1998 IMC, 5

Tags: countable
$S$ is a family of balls in $\mathbb{R}^{n}$ ($n > 1$) such that the intersection of any two contains at most one point. Show that the set of points belonging to at least two members of $S$ is countable.

2021 Iran Team Selection Test, 4

Assume $\Omega(n),\omega(n)$ be the biggest and smallest prime factors of $n$ respectively . Alireza and Amin decided to play a game. First Alireza chooses $1400$ polynomials with integer coefficients. Now Amin chooses $700$ of them, the set of polynomials of Alireza and Amin are $B,A$ respectively . Amin wins if for all $n$ we have : $$\max_{P \in A}(\Omega(P(n))) \ge \min_{P \in B}(\omega(P(n)))$$ Who has the winning strategy. Proposed by [i]Alireza Haghi[/i]

1999 ITAMO, 4

Albert and Barbara play the following game. On a table there are $1999$ sticks, and each player in turn removes some of them: at least one stick, but at most half of the currently remaining sticks. The player who leaves just one stick on the table loses the game. Barbara moves first. Decide which player has a winning strategy and describe that strategy.

2021 Peru EGMO TST, 5

Determine all integers $k$ such that the equation: $$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{k}{xyz}$$ has an infinite number of integer solutions $(x,y,z)$ with gcd$(k,xyz)=1$.

2021 Science ON all problems, 4

Find all functions $f:\mathbb{Z}_{\ge 1}\to \mathbb{R}_{>0}$ such that for all positive integers $n$ the following relation holds: $$\sum_{d|n} f(d)^3=\left (\sum_{d|n} f(d) \right )^2,$$ where both sums are taken over the positive divisors of $n$. [i] (Vlad Robu) [/i]

1999 All-Russian Olympiad, 7

A circle through vertices $A$ and $B$ of triangle $ABC$ meets side $BC$ again at $D$. A circle through $B$ and $C$ meets side $AB$ at $E$ and the first circle again at $F$. Prove that if points $A$, $E$, $D$, $C$ lie on a circle with center $O$ then $\angle BFO$ is right.

2008 ITest, 91

Find the sum of all positive integers $n$ such that \[x^3+y^3+z^3=nx^2y^2z^2\] is satisfied by at least one ordered triplet of positive integers $(x,y,z)$.

2009 China Team Selection Test, 1

Given that points $ D,E$ lie on the sidelines $ AB,BC$ of triangle $ ABC$, respectively, point $ P$ is in interior of triangle $ ABC$ such that $ PE \equal{} PC$ and $ \bigtriangleup DEP\sim \bigtriangleup PCA.$ Prove that $ BP$ is tangent of the circumcircle of triangle $ PAD.$

2019 HMIC, 3

Tags: algebra
Do there exist four points $P_i = (x_i, y_i) \in \mathbb{R}^2\ (1\leq i \leq 4)$ on the plane such that: [list] [*] for all $i = 1,2,3,4$, the inequality $x_i^4 + y_i^4 \le x_i^3+ y_i^3$ holds, and [*] for all $i \neq j$, the distance between $P_i$ and $P_j$ is greater than $1$? [/list] [i]Pakawut Jiradilok[/i]

2017 AMC 8, 18

Tags:
In the non-convex quadrilateral $ABCD$ shown below, $\angle BCD$ is a right angle, $AB=12$, $BC=4$, $CD=3$, and $AD=13$. [asy]draw((0,0)--(2.4,3.6)--(0,5)--(12,0)--(0,0)); label("$B$", (0, 0), SW); label("$A$", (12, 0), ESE); label("$C$", (2.4, 3.6), SE); label("$D$", (0, 5), N);[/asy] What is the area of quadrilateral $ABCD$? $\textbf{(A) }12\qquad\textbf{(B) }24\qquad\textbf{(C) }26\qquad\textbf{(D) }30\qquad\textbf{(E) }36$

2023 Pan-African, 6

Tags: geometry
Let $ABC$ be an acute triangle with $AB<AC$. Let $D, E,$ and $F$ be the feet of the perpendiculars from $A, B,$ and $C$ to the opposite sides, respectively. Let $P$ be the foot of the perpendicular from $F$ to line $DE$. Line $FP$ and the circumcircle of triangle $BDF$ meet again at $Q$. Show that $\angle PBQ = \angle PAD$.

2007 AMC 10, 4

Tags:
The point $ O$ is the center of the circle circumscribed about $ \triangle ABC$, with $ \angle BOC \equal{} 120^\circ$ and $ \angle AOB \equal{} 140^\circ$, as shown. What is the degree measure of $ \angle ABC$? [asy]unitsize(2cm); defaultpen(linewidth(.8pt)+fontsize(10pt)); pair B=dir(80), A=dir(220), C=dir(320), O=(0,0); draw(unitcircle); draw(A--B--C--O--A--C); draw(O--B); draw(anglemark(C,O,A,2)); label("$A$",A,SW); label("$B$",B,NNE); label("$C$",C,SE); label("$O$",O,S); label("$140^{\circ}$",O,NW,fontsize(8pt)); label("$120^{\circ}$",O,ENE,fontsize(8pt));[/asy]$ \textbf{(A)}\ 35 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 50 \qquad \textbf{(E)}\ 60$

2011 AMC 8, 3

Tags: ratio
Extend the square pattern of $8$ black and $17$ white square tiles by attaching a border of black tiles around the square. What is the ratio of black tiles to white tiles in the extended pattern? [asy] filldraw((0,0)--(5,0)--(5,5)--(0,5)--cycle,white,black); filldraw((1,1)--(4,1)--(4,4)--(1,4)--cycle,mediumgray,black); filldraw((2,2)--(3,2)--(3,3)--(2,3)--cycle,white,black); draw((4,0)--(4,5)); draw((3,0)--(3,5)); draw((2,0)--(2,5)); draw((1,0)--(1,5)); draw((0,4)--(5,4)); draw((0,3)--(5,3)); draw((0,2)--(5,2)); draw((0,1)--(5,1));[/asy] $ \textbf{(A)}\ 8:17\qquad\textbf{(B)}\ 25:49\qquad\textbf{(C)}\ 36:25\qquad\textbf{(D)}\ 32:17\qquad\textbf{(E)}\ 36:17 $

1992 Swedish Mathematical Competition, 2

The squares in a $9\times 9$ grid are numbered from $11$ to $99$, where the first digit is the row and the second the column. Each square is colored black or white. Squares $44$ and $49$ are black. Every black square shares an edge with at most one other black square, and each white square shares an edge with at most one other white square. What color is square $99$?

2018 Singapore Senior Math Olympiad, 3

Determine the largest positive integer $n$ such that the following statement is true: There exists $n$ real polynomials, $P_1(x),\ldots,P_n(x)$ such that the sum of any two of them have no real roots but the sum of any three does.

2021 Latvia Baltic Way TST, P13

Does there exist a natural number $a$ so that: a) $\Big ((a^2-3)^3+1\Big) ^a-1$ is a perfect square? b) $\Big ((a^2-3)^3+1\Big) ^{a+1}-1$ is a perfect square?

2022 Belarusian National Olympiad, 10.7

Find all positive integers $a$ for which there exists a polynomial $p(x)$ with integer coefficients such that $p(\sqrt{2}+1)=2-\sqrt{2}$ and $p(\sqrt{2}+2)=a$

2004 AMC 10, 17

Tags:
The two digits in Jack's age are the same as the digits in Bill's age, but in reverse order. In five years Jack will be twice as old as Bill will be then. What is the difference in their current ages? $ \textbf{(A)}\ 9 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 27 \qquad \textbf{(D)}\ 36 \qquad \textbf{(E)}\ 45$

2021 Peru IMO TST, P3

For any positive integer $n$, we define $$S_n=\sum_{k=1}^n \frac{2^k}{k^2}.$$ Prove that there are no polynomials $P,Q$ with real coefficients such that for any positive integer $n$, we have $\frac{S_{n+1}}{S_n}=\frac{P(n)}{Q(n)}$.

2020 Bulgaria National Olympiad, P3

Let $a_1\in\mathbb{Z}$, $a_2=a_1^2-a_1-1$, $\dots$ ,$a_{n+1}=a_n^2-a_n-1$. Prove that $a_{n+1}$ and $2n+1$ are coprime.

2020 AMC 10, 12

Tags: digit
The decimal representation of $$\dfrac{1}{20^{20}}$$ consists of a string of zeros after the decimal point, followed by a 9 and then several more digits. How many zeros are in that initial string of zeros after the decimal point? $\textbf{(A) }23\qquad\textbf{(B) }24\qquad\textbf{(C) }25\qquad\textbf{(D) }26\qquad\textbf{(E) }27$

V Soros Olympiad 1998 - 99 (Russia), 11.1

Find all $x$ for which the inequality holds $$9 \sin x +40 \cos x \ge 41.$$

1962 Miklós Schweitzer, 6

Let $ E$ be a bounded subset of the real line, and let $ \Omega$ be a system of (non degenerate) closed intervals such that for each $ x \in E$ there exists an $ I \in \Omega$ with left endpoint $ x$. Show that for every $ \varepsilon > 0$ there exists a finite number of pairwise non overlapping intervals belonging to $ \Omega$ that cover $ E$ with the exception of a subset of outer measure less than $ \varepsilon$. [J. Czipszer]

2002 District Olympiad, 4

For any natural number $ n\ge 2, $ define $ m(n) $ to be the minimum number of elements of a set $ S $ that simultaneously satisfy: $ \text{(i)}\quad \{ 1,n\} \subset S\subset \{ 1,2,\ldots ,n\} $ $ \text{(ii)}\quad $ any element of $ S, $ distinct from $ 1, $ is equal to the sum of two (not necessarily distinct) elements from $ S. $ [b]a)[/b] Prove that $ m(n)\ge 1+\left\lfloor \log_2 n \right\rfloor ,\quad\forall n\in\mathbb{N}_{\ge 2} . $ [b]b)[/b] Prove that there are infinitely many natural numbers $ n\ge 2 $ such that $ m(n)=m(n+1). $ $ \lfloor\rfloor $ denotes the usual integer part.

2018 India PRMO, 23

What is the largest positive integer $n$ such that $$\frac{a^2}{\frac{b}{29} + \frac{c}{31}}+\frac{b^2}{\frac{c}{29} + \frac{a}{31}}+\frac{c^2}{\frac{a}{29} + \frac{b}{31}} \ge n(a+b+c)$$holds for all positive real numbers $a,b,c$.