This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

PEN C Problems, 3

Let $p$ be an odd prime number. Show that the smallest positive quadratic nonresidue of $p$ is smaller than $\sqrt{p}+1$.

LMT Team Rounds 2010-20, B1

Tags: algebra
Four $L$s are equivalent to three $M$s. Nine $M$s are equivalent to fourteen $T$ s. Seven $T$ s are equivalent to two $W$ s. If Kevin has thirty-six $L$s, how many $W$ s would that be equivalent to?

1996 Iran MO (3rd Round), 1

Find all non-negative integer solutions of the equation \[2^x + 3^y = z^2 .\]

2004 Vietnam Team Selection Test, 1

Let us consider a set $S = \{ a_1 < a_2 < \ldots < a_{2004}\}$, satisfying the following properties: $f(a_i) < 2003$ and $f(a_i) = f(a_j) \quad \forall i, j$ from $\{1, 2,\ldots , 2004\}$, where $f(a_i)$ denotes number of elements which are relatively prime with $a_i$. Find the least positive integer $k$ for which in every $k$-subset of $S$, having the above mentioned properties there are two distinct elements with greatest common divisor greater than 1.

2005 China Girls Math Olympiad, 6

An integer $ n$ is called good if there are $ n \geq 3$ lattice points $ P_1, P_2, \ldots, P_n$ in the coordinate plane satisfying the following conditions: If line segment $ P_iP_j$ has a rational length, then there is $ P_k$ such that both line segments $ P_iP_k$ and $ P_jP_k$ have irrational lengths; and if line segment $ P_iP_j$ has an irrational length, then there is $ P_k$ such that both line segments $ P_iP_k$ and $ P_jP_k$ have rational lengths. (1) Determine the minimum good number. (2) Determine if 2005 is a good number. (A point in the coordinate plane is a lattice point if both of its coordinate are integers.)

1985 Putnam, B2

Tags:
Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1, f_{n}(0)=0$ for $n \geq 1,$ and $$ \frac{d}{d x} f_{n+1}(x)=(n+1) f_{n}(x+1) $$ for $n \geq 0 .$ Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

2019 CMI B.Sc. Entrance Exam, 6

$(a)$ Compute - \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \bigg[ \int_{0}^{e^x} \log ( t ) \cos^4 ( t ) \mathrm{d}t \bigg] \end{align*} $(b)$ For $x > 0 $ define $F ( x ) = \int_{1}^{x} t \log ( t ) \mathrm{d}t . $\\ \\$1.$ Determine the open interval(s) (if any) where $F ( x )$ is decreasing and all the open interval(s) (if any) where $F ( x )$ is increasing.\\ \\$2.$ Determine all the local minima of $F ( x )$ (if any) and all the local maxima of $F ( x )$ (if any) $.$

1983 Bulgaria National Olympiad, Problem 6

Let $a,b,c>0$ satisfy for all integers $n$, we have $$\lfloor an\rfloor+\lfloor bn\rfloor=\lfloor cn\rfloor$$Prove that at least one of $a,b,c$ is an integer.

2000 All-Russian Olympiad Regional Round, 9.4

Circles $S_1$ and $S_2$ intersect at points $M$ and $N$. Through point $A$ of circle $S_1$, draw straight lines $AM$ and $AN$ intersecting $S_2$ at points $B$ and $C$, and through point $D$ of circle $S_2$, draw straight lines $DM$ and $DN$ intersecting $S_1$ at points $E$ and $F$, and $A$, $E$, $F$ lie along one side of line $MN$, and $D$, $B$, $C$ lie on the other side (see figure). Prove that if $AB = DE$, then points $A$, $F$, $C$ and $D$ lie on the same circle, the position of the center of which does not depend on choosing points $A$ and $D$. [img]https://cdn.artofproblemsolving.com/attachments/7/0/d1f9c2f39352e2b39e55bd2538677073618ef9.png[/img]

2013 AMC 10, 5

Tags:
Positive integers $a$ and $b$ are each less than 6. What is the smallest possible value for $2\cdot a-a\cdot b$? $\textbf{(A) }-20\qquad\textbf{(B) }-15\qquad\textbf{(C) }-10\qquad\textbf{(D) }0\qquad\textbf{(E) }2$

1950 Moscow Mathematical Olympiad, 181

a) In a convex $13$-gon all diagonals are drawn, dividing it into smaller polygons. What is the greatest number of sides can these polygons have? b) In a convex $1950$-gon all diagonals are drawn, dividing it into smaller polygons. What is the greatest number of sides can these polygons have?

2021-IMOC, C10

In a $100$ by $100$ grid, there is a spider and $100$ bugs. Each time, the spider can walk up, down, left or right, and the spider aims to visit all the squares with bugs to eat them all. The spider begins from the top-left corner. Show that no matter where the bugs are, the spider can always eat them all within $2000$ steps.

2015 BMT Spring, 1

A fair $6$-sided die is repeatedly rolled until a $1, 4, 5$, or $6$ is rolled. What is the expected value of the product of all the rolls?

2003 Federal Competition For Advanced Students, Part 2, 3

Let $ABC$ be an acute-angled triangle. The circle $k$ with diameter $AB$ intersects $AC$ and $BC$ again at $P$ and $Q$, respectively. The tangents to $k$ at $A$ and $Q$ meet at $R$, and the tangents at $B$ and $P$ meet at $S$. Show that $C$ lies on the line $RS$.

2017 China Team Selection Test, 5

Tags: geometry
In the non-isosceles triangle $ABC$,$D$ is the midpoint of side $BC$,$E$ is the midpoint of side $CA$,$F$ is the midpoint of side $AB$.The line(different from line $BC$) that is tangent to the inscribed circle of triangle $ABC$ and passing through point $D$ intersect line $EF$ at $X$.Define $Y,Z$ similarly.Prove that $X,Y,Z$ are collinear.

2021 Romania National Olympiad, 4

Determine all nonzero integers $a$ for which there exists two functions $f,g:\mathbb Q\to\mathbb Q$ such that \[f(x+g(y))=g(x)+f(y)+ay\text{ for all } x,y\in\mathbb Q.\] Also, determine all pairs of functions with this property. [i]Vasile Pop[/i]

2024 Mexico National Olympiad, 6

Ana and Beto play on a blackboard where all integers from 1 to 2024 (inclusive) are written. On each turn, Ana chooses three numbers $a,b,c$ written on the board and then Beto erases them and writes one of the following numbers: $$a+b-c, a-b+c, ~\text{or}~ -a+b+c.$$ The game ends when only two numbers are left on the board and Ana cannot play. If the sum of the final numbers is a multiple of 3, Beto wins. Otherwise, Ana wins. ¿Who has a winning strategy?

2010 Contests, 3

Tags:
In a triangle $ABC$, let $M$ be the midpoint of $AC$. If $BC = \frac{2}{3} MC$ and $\angle{BMC}=2 \angle{ABM}$, determine $\frac{AM}{AB}$.

2019 Bulgaria EGMO TST, 2

Let $ABCD$ be a cyclic quadrilateral with circumcircle $\omega$ centered at $O$, whose diagonals intersect at $H$. Let $O_1$ and $O_2$ be the circumcenters of triangles $AHD$ and $BHC$. A line through $H$ intersects $\omega$ at $M_1$ and $M_2$ and intersects the circumcircles of triangles $O_1HO$ and $O_2HO$ at $N_1$ and $N_2$, respectively, so that $N_1$ and $N_2$ lie inside $\omega$. Prove that $M_1N_1 = M_2N_2$.

1974 IMO, 1

Three players $A,B$ and $C$ play a game with three cards and on each of these $3$ cards it is written a positive integer, all $3$ numbers are different. A game consists of shuffling the cards, giving each player a card and each player is attributed a number of points equal to the number written on the card and then they give the cards back. After a number $(\geq 2)$ of games we find out that A has $20$ points, $B$ has $10$ points and $C$ has $9$ points. We also know that in the last game B had the card with the biggest number. Who had in the first game the card with the second value (this means the middle card concerning its value).

2007 All-Russian Olympiad, 7

Given a tetrahedron $ T$. Valentin wants to find two its edges $ a,b$ with no common vertices so that $ T$ is covered by balls with diameters $ a,b$. Can he always find such a pair? [i]A. Zaslavsky[/i]

2011 ELMO Shortlist, 3

Let $N$ be a positive integer. Define a sequence $a_0,a_1,\ldots$ by $a_0=0$, $a_1=1$, and $a_{n+1}+a_{n-1}=a_n(2-1/N)$ for $n\ge1$. Prove that $a_n<\sqrt{N+1}$ for all $n$. [i]Evan O'Dorney.[/i]

2019 JBMO Shortlist, C3

A $5 \times 100$ table is divided into $500$ unit square cells, where $n$ of them are coloured black and the rest are coloured white. Two unit square cells are called [i]adjacent[/i] if they share a common side. Each of the unit square cells has at most two adjacent black unit square cells. Find the largest possible value of $n$.

2023 Cono Sur Olympiad, 5

Tags: geometry
Let $ABC$ be an acute triangle and $D, E, F$ are the midpoints of $BC, CA, AB$, respectively. The circle with diameter $AD$ intersects the lines $AB$ and $AC$ at points $P$ and $Q$ , respectively. The lines through $P$ and $Q$ parallel to $BC$ intersect $DE$ at point $R$ and $DF$ at point $S$, respectively. The circumcircle of $DPR$ intersects $AB$ at $X$, the circumcircle of $DQS$ intersects $AC$ in $Y$, and these two circles intersect again point $Z$. Prove that $Z$ is the midpoint of $XY$.

1970 Bulgaria National Olympiad, Problem 4

Tags: triangle , geometry
Let $\delta_0=\triangle A_0B_0C_0$ be a triangle. On each of the sides $B_0C_0$, $C_0A_0$, $A_0B_0$, there are constructed squares in the halfplane, not containing the respective vertex $A_0,B_0,C_0$ and $A_1,B_1,C_1$ are the centers of the constructed squares. If we use the triangle $\delta_1=\triangle A_1B_1C_1$ in the same way we may construct the triangle $\delta_2=\triangle A_2B_2C_2$; from $\delta_2=\triangle A_2B_2C_2$ we may construct $\delta_3=\triangle A_3B_3C_3$ and etc. Prove that: (a) segments $A_0A_1,B_0B_1,C_0C_1$ are respectively equal and perpendicular to $B_1C_1,C_1A_1,A_1B_1$; (b) vertices $A_1,B_1,C_1$ of the triangle $\delta_1$ lies respectively over the segments $A_0A_3,B_0B_3,C_0C_3$ (defined by the vertices of $\delta_0$ and $\delta_1$) and divide them in ratio $2:1$. [i]K. Dochev[/i]