This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2014 Macedonia National Olympiad, 2

Solve the following equation in $\mathbb{Z}$: \[3^{2a + 1}b^2 + 1 = 2^c\]

1990 Romania Team Selection Test, 2

Prove the following equality for all positive integers $m,n$: $$\sum_{k=0}^{n} {m+k \choose k} 2^{n-k} +\sum_{k=0}^m {n+k \choose k}2^{m-k}= 2^{m+n+1}$$

2020 Stars of Mathematics, 3

Determine the primes $p$ for which the numbers $2\lfloor p/k\rfloor - 1, \ k = 1,2,\ldots, p,$ are all quadratic residues modulo $p.$ [i]Vlad Matei[/i]

1999 Greece JBMO TST, 1

A circle is divided in $100$ equal parts and the points of this division are colored green or yellow, such that when between two points of division $A,B$ there are exactly $4$ division points and the point $A$ is green, then the point $B$ shall be yellow. Which points are more, the green or the yellow ones?

2014 AIME Problems, 8

The positive integers $N$ and $N^2$ both end in the same sequence of four digits $abcd$ when written in base 10, where digit $a$ is not zero. Find the three-digit number $abc$.

2021 China Team Selection Test, 4

Proof that $$ \sum_{m=1}^n5^{\omega (m)} \le \sum_{k=1}^n\lfloor \frac{n}{k} \rfloor \tau (k)^2 \le \sum_{m=1}^n5^{\Omega (m)} .$$

2021 China Team Selection Test, 2

Given distinct positive integer $ a_1,a_2,…,a_{2020} $. For $ n \ge 2021 $, $a_n$ is the smallest number different from $a_1,a_2,…,a_{n-1}$ which doesn't divide $a_{n-2020}...a_{n-2}a_{n-1}$. Proof that every number large enough appears in the sequence.

2020 Putnam, B1

For a positive integer $n$, define $d(n)$ to be the sum of the digits of $n$ when written in binary (for example, $d(13)=1+1+0+1=3$). Let \[ S=\sum_{k=1}^{2020}(-1)^{d(k)}k^3. \] Determine $S$ modulo $2020$.

2024 Iranian Geometry Olympiad, 5

Point $P$ is the intersection of diagonals $AC,BD$ of the trapezoid $ABCD$ with $AB \parallel CD$. Reflections of the lines $AD$ and $BC$ into the internal angle bisectors of $\angle PDC$ and $\angle PCD$ intersects the circumcircles of $\bigtriangleup APD$ and $\bigtriangleup BPC$ at $D'$ and $C'$. Line $C'A$ intersects the circumcircle of $\bigtriangleup BPC$ again at $Y$ and $D'C$ intersects the circumcricle of $\bigtriangleup APD$ again at $X$. Prove that $P,X,Y$ are collinear. [i]Proposed by Iman Maghsoudi - Iran[/i]

2010 Brazil Team Selection Test, 2

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2019 Estonia Team Selection Test, 7

An acute-angled triangle $ABC$ has two altitudes $BE$ and $CF$. The circle with diameter $AC$ intersects the segment $BE$ at point $P$. A circle with diameter $AB$ intersects the segment $CF$ at point $Q$ and the extension of this altitude at point $Q'$. Prove that $\angle PQ'Q = \angle PQB$.

2008 Purple Comet Problems, 6

Tags:
Three friends who live in the same apartment building leave the building at the same time to go rock climbing on a cliff just outside of town. Susan walks to the cliff and climbs to the top of the cliff. Fred runs to the cliff twice as fast as Susan walks and climbs the top of the cliff at a rate that is only two-thirds as fast as Susan climbs. Ralph bikes to the cliff at a speed twice as fast as Fred runs and takes two hours longer to climb to the top of the cliff than Susan does. If all three friends reach the top of the cliff at the same time, how many minutes after they left home is that?

2000 Tournament Of Towns, 2

Positive integers $a, b, c, d$ satisfy the inequality $ad - bc > 1$. Prove that at least one of the numbers $a, b, c, d$ is not divisible by $ad - bc$. (A Spivak)

2020 Ukrainian Geometry Olympiad - December, 1

The three sides of the quadrilateral are equal, the angles between them are equal, respectively $90^o$ and $150^o$. Find the smallest angle of this quadrilateral in degrees.

2022 May Olympiad, 2

Bob chose six of the nine digits from $1$ to $9$ and wrote the list, ordered from smallest to largest, of all three-digit numbers that can be formed using the digits you chose. At Bob's list, the number $317$ appears at position $22$. What number appears at position $60$ in the list from Bob? Find all possibilities.

2010 AMC 12/AHSME, 22

Let $ ABCD$ be a cyclic quadrilateral. The side lengths of $ ABCD$ are distinct integers less than $ 15$ such that $ BC\cdot CD\equal{}AB\cdot DA$. What is the largest possible value of $ BD$? $ \textbf{(A)}\ \sqrt{\frac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\frac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\frac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\frac{533}{2}}$

2015 CIIM, Problem 1

Find the real number $a$ such that the integral $$\int_a^{a+8}e^{-x}e^{-x^2}dx$$ attain its maximum.

1959 AMC 12/AHSME, 38

Tags:
If $4x+\sqrt{2x}=1$, then $x$: $ \textbf{(A)}\ \text{is an integer} \qquad\textbf{(B)}\ \text{is fractional}\qquad\textbf{(C)}\ \text{is irrational}\qquad\textbf{(D)}\ \text{is imaginary}\qquad\textbf{(E)}\ \text{may have two different values} $

2019 VJIMC, 4

Determine the largest constant $K\geq 0$ such that $$\frac{a^a(b^2+c^2)}{(a^a-1)^2}+\frac{b^b(c^2+a^2)}{(b^b-1)^2}+\frac{c^c(a^2+b^2)}{(c^c-1)^2}\geq K\left (\frac{a+b+c}{abc-1}\right)^2$$ holds for all positive real numbers $a,b,c$ such that $ab+bc+ca=abc$. [i]Proposed by Orif Ibrogimov (Czech Technical University of Prague).[/i]

2000 May Olympiad, 5

A rectangle with area $n$ with $n$ positive integer, can be divided in $n$ squares(this squares are equal) and the rectangle also can be divided in $n + 98$ squares (the squares are equal). Find the sides of this rectangle

2007 Princeton University Math Competition, 3

Suppose that $ABCD$ is a rectangle with sides of length $12$ and $18$. Let $S$ be the region of points contained in $ABCD$ which are closer to the center of the rectangle than to any of its vertices. Find the area of $S$.

LMT Guts Rounds, 35

Tags:
Consider a set of $6$ fixed points in the plane, with no three collinear. Between some pairs of these points, we may draw one arrow from one point to the other. How many possible configurations of arrows are there such that if there is an arrow from point $A$ to point $B$ and an arrow from $B$ to $C,$ then there is an arrow from $A$ to $C?$ Your score will be $16-\frac{1}{800}|\textbf{Your Answer}-\textbf{Actual Answer}|$ rounded to the nearest integer or zero, whichever is higher.

2020 Purple Comet Problems, 11

Tags: geometry
Two circles have radius $9$, and one circle has radius $7$. Each circle is externally tangent to the other two circles, and each circle is internally tangent to two sides of an isosceles triangle, as shown. The sine of the base angle of the triangle is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [img]https://cdn.artofproblemsolving.com/attachments/7/f/c34ff6bcaf6f07e6ba81a7d256e15a61f0e1fa.png[/img]

2022 Polish Junior Math Olympiad First Round, 7.

None of the $n$ (not necessarily distinct) digits selected are equal to $0$ or $7$. It turns out that every $n$-digit number formed using these digits is divisible by $7$. Prove that $n$ is divisible by $6$.

MBMT Team Rounds, 2018

[hide=C stands for Cantor, G stands for Gauss]they had two problem sets under those two names[/hide] [b]C1.[/b] Mr. Pham flips $2018$ coins. What is the difference between the maximum and minimum number of heads that can appear? [b]C2 / G1.[/b] Brandon wants to maximize $\frac{\Box}{\Box} +\Box$ by placing the numbers $1$, $2$, and $3$ in the boxes. If each number may only be used once, what is the maximum value attainable? [b]C3.[/b] Guang has $10$ cents consisting of pennies, nickels, and dimes. What are all the possible numbers of pennies he could have? [b]C4.[/b] The ninth edition of Campbell Biology has $1464$ pages. If Chris reads from the beginning of page $426$ to the end of page$449$, what fraction of the book has he read? [b]C5 / G2.[/b] The planet Vriky is a sphere with radius $50$ meters. Kyerk starts at the North Pole, walks straight along the surface of the sphere towards the equator, runs one full circle around the equator, and returns to the North Pole. How many meters did Kyerk travel in total throughout his journey? [b]C6 / G3.[/b] Mr. Pham is lazy and decides Stan’s quarter grade by randomly choosing an integer from $0$ to $100$ inclusive. However, according to school policy, if the quarter grade is less than or equal to $50$, then it is bumped up to $50$. What is the probability that Stan’s final quarter grade is $50$? [b]C7 / G5.[/b] What is the maximum (finite) number of points of intersection between the boundaries of a equilateral triangle of side length $1$ and a square of side length $20$? [b]C8.[/b] You enter the MBMT lottery, where contestants select three different integers from $1$ to $5$ (inclusive). The lottery randomly selects two winning numbers, and tickets that contain both of the winning numbers win. What is the probability that your ticket will win? [b]C9 / G7.[/b] Find a possible solution $(B, E, T)$ to the equation $THE + MBMT = 2018$, where $T, H, E, M, B$ represent distinct digits from $0$ to $9$. [b]C10.[/b] $ABCD$ is a unit square. Let $E$ be the midpoint of $AB$ and $F$ be the midpoint of $AD$. $DE$ and $CF$ meet at $G$. Find the area of $\vartriangle EFG$. [b]C11.[/b] The eight numbers $2015$, $2016$, $2017$, $2018$, $2019$, $2020$, $2021$, and $2022$ are split into four groups of two such that the two numbers in each pair differ by a power of $2$. In how many different ways can this be done? [b]C12 / G4.[/b] We define a function f such that for all integers $n, k, x$, we have that $$f(n, kx) = k^n f(n, x) and f(n + 1, x) = xf(n, x).$$ If $f(1, k) = 2k$ for all integers $k$, then what is $f(3, 7)$? [b]C13 / G8.[/b] A sequence of positive integers is constructed such that each term is greater than the previous term, no term is a multiple of another term, and no digit is repeated in the entire sequence. An example of such a sequence would be $4$, $79$, $1035$. How long is the longest possible sequence that satisfies these rules? [b]C14 / G11.[/b] $ABC$ is an equilateral triangle of side length $8$. $P$ is a point on side AB. If $AC +CP = 5 \cdot AP$, find $AP$. [b]C15.[/b] What is the value of $(1) + (1 + 2) + (1 + 2 + 3) + ... + (1 + 2 + ... + 49 + 50)$? [b]G6.[/b] An ant is on a coordinate plane. It starts at $(0, 0)$ and takes one step each second in the North, South, East, or West direction. After $5$ steps, what is the probability that the ant is at the point $(2, 1)$? [b]G10.[/b] Find the set of real numbers $S$ so that $$\prod_{c\in S}(x^2 + cxy + y^2) = (x^2 - y^2)(x^{12} - y^{12}).$$ [b]G12.[/b] Given a function $f(x)$ such that $f(a + b) = f(a) + f(b) + 2ab$ and $f(3) = 0$, find $f\left( \frac12 \right)$. [b]G13.[/b] Badville is a city on the infinite Cartesian plane. It has $24$ roads emanating from the origin, with an angle of $15$ degrees between each road. It also has beltways, which are circles centered at the origin with any integer radius. There are no other roads in Badville. Steven wants to get from $(10, 0)$ to $(3, 3)$. What is the minimum distance he can take, only going on roads? [b]G14.[/b] Team $A$ and Team $B$ are playing basketball. Team A starts with the ball, and the ball alternates between the two teams. When a team has the ball, they have a $50\%$ chance of scoring $1$ point. Regardless of whether or not they score, the ball is given to the other team after they attempt to score. What is the probability that Team $A$ will score $5$ points before Team $B$ scores any? [b]G15.[/b] The twelve-digit integer $$\overline{A58B3602C91D},$$ where $A, B, C, D$ are digits with $A > 0$, is divisible by $10101$. Find $\overline{ABCD}$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].