This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2006 China Second Round Olympiad, 10

Suppose four solid iron balls are placed in a cylinder with the radius of 1 cm, such that every two of the four balls are tangent to each other, and the two balls in the lower layer are tangent to the cylinder base. Now put water into the cylinder. Find, in $\text{cm}^2$, the volume of water needed to submerge all the balls.

2017 Kosovo National Mathematical Olympiad, 1

1. Find all primes of the form $n^3-1$ .

2024 USAMO, 5

Tags: geometry
Point $D$ is selected inside acute $\triangle ABC$ so that $\angle DAC = \angle ACB$ and $\angle BDC = 90^{\circ} + \angle BAC$. Point $E$ is chosen on ray $BD$ so that $AE = EC$. Let $M$ be the midpoint of $BC$. Show that line $AB$ is tangent to the circumcircle of triangle $BEM$. [i]Proposed by Anton Trygub[/i]

1970 IMO Longlists, 25

A real function $f$ is defined for $0\le x\le 1$, with its first derivative $f'$ defined for $0\le x\le 1$ and its second derivative $f''$ defined for $0<x<1$. Prove that if $f(0)=f'(0)=f'(1)=f(1)-1 =0$, then there exists a number $0<y<1$ such that $|f''(y)|\ge 4$.

2018 China Northern MO, 2

Let $a$,$b$,$c$ be nonnegative reals such that $$a^2+b^2+c^2+ab+\frac{2}{3}ac+\frac{4}{3}bc=1$$ Find the maximum and minimum value of $a+b+c$.

2007 Finnish National High School Mathematics Competition, 3

There are five points in the plane, no three of which are collinear. Show that some four of these points are the vertices of a convex quadrilateral.

2011 Morocco National Olympiad, 3

When dividing an integer $m$ by a positive integer $n$, $(0< n\leq 100)$, a student finds $\frac{m}{n}= 0,167a_{1}a_{2}...$. Prove that the student made a mistake while computing.

2007 National Olympiad First Round, 36

Tags:
Five points, no three of which are collinear, are given. What is the least possible value of the numbers of convex polygons whose some corners are from these five points? $ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 11 \qquad\textbf{(C)}\ 12 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 16 $

2020 USEMO, 2

Calvin and Hobbes play a game. First, Hobbes picks a family $F$ of subsets of $\{1, 2, . . . , 2020\}$, known to both players. Then, Calvin and Hobbes take turns choosing a number from $\{1, 2, . . . , 2020\}$ which is not already chosen, with Calvin going first, until all numbers are taken (i.e., each player has $1010$ numbers). Calvin wins if he has chosen all the elements of some member of $F$, otherwise Hobbes wins. What is the largest possible size of a family $F$ that Hobbes could pick while still having a winning strategy?

2012 Today's Calculation Of Integral, 770

Find the value of $a$ such that : \[101a=6539\int_{-1}^1 \frac{x^{12}+31}{1+2011^{x}}\ dx.\]

1997 Akdeniz University MO, 3

$(x_n)$ be a sequence with $x_1=0$, $$x_{n+1}=5x_n + \sqrt{24x_n^2+1}$$. Prove that for $k \geq 2$ $x_k$ is a natural number.

ICMC 3, 2

Tags: geometry
Let \(\mathbb{R}^2\) denote the set of points in the Euclidean plane. For points \(A,P\in\mathbb{R}^2\) and a real number \(k\), define the [i]dilation[/i] of \(A\) about \(P\) by a factor of \(k\) as the point \(P+k(A-P)\). Call a sequence of point \(A_0, A_1, A_2,\ldots\in\mathbb{R}^2\) [i]unbounded[/i] if the sequence of lengths \(\left|A_0-A_0\right|,\left|A_1-A_0\right|,\left|A_2-A_0\right|,\ldots\) has no upper bound. Now consider \(n\) distinct points \(P_0,P_1,\ldots,P_{n-1}\in\mathbb{R}^2\), and fix a real number \(r\). Given a starting point \(A_0\in\mathbb{R}^2\), iteratively define \(A_{i+1}\) by dilating \(A_i\) about \(P_j\) by a factor of \(r\), where \(j\) is the remainder of \(i\) when divided by \(n\). Prove that if \(\left|r\right|\geq 1\), then for any starting point \(A_0\in\mathbb{R}^2\), the sequence \(A_0,A_1,A_2,\ldots\) is either periodic or unbounded. [i]Proposed by the ICMC Problem Committee[/i]

2024 Belarus Team Selection Test, 2.3

Tags: geometry
A right triangle $ABC$ ($\angle A=90$) is inscribed in a circle $\omega$. Tangent to $\omega$ at $A$ intersects $BC$ at $P$, $B$ lies between $P$ and $C$. Let $M$ be the midpoint of the minor arc $AB$. $MP$ intersects $\omega$ at $Q$. Point $X$ lies on a ray $PA$ such that $\angle XCB=90$. Prove that line $XQ$ passes through the orthocenter of the triangle $ABO$ [i]Mayya Golitsyna[/i]

1992 Putnam, A5

For each positive integer $n$, let $a_n = 0$ (or $1$) if the number of $1$’s in the binary representation of $n$ is even (or odd), respectively. Show that there do not exist positive integers $k$ and $m$ such that $$a_{k+j}=a_{k+m+j} =a_{k+2m+j}$$ for $0 \leq j \leq m-1.$

2003 National High School Mathematics League, 9

Tags:
Two sets $A=\{x\in\mathbb{R}|x^2-4x+3<0\},B=\{x\in\mathbb{R}|2^{1-x}+a\leq0,x^2-2(a+7)x+5\leq0\}$. If $A\subseteq B$, then the range value of real number $a$ is________.

2015 Nordic, 3

Let $n > 1$ and $p(x)=x^n+a_{n-1}x^{n-1} +...+a_0$ be a polynomial with $n$ real roots (counted with multiplicity). Let the polynomial $q$ be defined by $$q(x) = \prod_{j=1}^{2015} p(x + j)$$. We know that $p(2015) = 2015$. Prove that $q$ has at least $1970$ different roots $r_1, ..., r_{1970}$ such that $|r_j| < 2015$ for all $ j = 1, ..., 1970$.

2022 Sharygin Geometry Olympiad, 9.3

Tags: geometry
A medial line parallel to the side $AC$ of triangle $ABC$ meets its circumcircle at points at $X$ and $Y$. Let $I$ be the incenter of triangle $ABC$ and $D$ be the midpoint of arc $AC$ not containing $B$.A point $L$ lie on segment $DI$ in such a way that $DL= BI/2$. Prove that $\angle IXL = \angle IYL$.

2007 Regional Olympiad of Mexico Center Zone, 4

Is there a power of $2$ that when written in the decimal system has all its digits different from zero and it is possible to reorder them to form another power of $2$?

2005 iTest, 1

Joe finally asked Kathryn out. They go out on a date on a Friday night, racing at the local go-kart track. They take turns racing across an $8 \times 8$ square grid composed of $64$ unit squares. If Joe and Kathryn start in the lower left-hand corner of the $8\times 8$ square, and can move either up or right along any side of any unit square, what is the probability that Joe and Kathryn take the same exact path to reach the upper right-hand corner of the $8\times 8$ square grid?

1982 All Soviet Union Mathematical Olympiad, 337

All the natural numbers from $1$ to $1982$ are gathered in an array in an arbitrary order in computer's memory. The program looks through all the sequent pairs (first and second, second and third,...) and exchanges numbers in the pair, if the number on the lower place is greater than another. Then the program repeats the process, but moves from another end of the array. The number, that stand initially on the $100$-th place reserved its place. Find that number.

2007 Today's Calculation Of Integral, 249

Determine the sign of $ \int_{\frac{1}{2}}^2 \frac{\ln t}{1\plus{}t^n}\ dt\ (n\equal{}1, 2, \cdots)$.

1981 AMC 12/AHSME, 10

Tags: function , symmetry
The lines $L$ and $K$ are symmetric to each other with respect to the line $y=x$. If the equation of the line $L$ is $y=ax+b$ with $a\neq 0$ and $b \neq 0$, then the equation of $K$ is $y=$ $\text{(A)}\ \frac 1ax+b \qquad \text{(B)}\ -\frac 1ax+b \qquad \text{(C)}\ \frac 1ax - \frac ba \qquad \text{(D)}\ \frac 1ax+\frac ba \qquad \text{(E)}\ \frac 1ax -\frac ba$

1996 Austrian-Polish Competition, 4

Real numbers $x,y,z, t$ satisfy $x + y + z +t = 0$ and $x^2+ y^2+ z^2+t^2 = 1$. Prove that $- 1 \le xy + yz + zt + tx \le 0$.

2013 AMC 8, 16

Tags: ratio
A number of students from Fibonacci Middle School are taking part in a community service project. The ratio of $8^\text{th}$-graders to $6^\text{th}$-graders is $5:3$, and the the ratio of $8^\text{th}$-graders to $7^\text{th}$-graders is $8:5$. What is the smallest number of students that could be participating in the project? $\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 55 \qquad \textbf{(D)}\ 79 \qquad \textbf{(E)}\ 89$

2013 Saudi Arabia IMO TST, 1

Adel draws an $m \times n$ grid of dots on the coordinate plane, at the points of integer coordinates $(a,b)$ where $1 \le a \le m$ and $1 \le b \le n$. He proceeds to draw a closed path along $k$ of these dots, $(a_1, b_1)$,$(a_2,b_2)$,...,$(a_k,b_k)$, such that $(a_i,b_i)$ and $(a_{i+1}, b_{i+1})$ (where $(a_{k+1}, b_{k+1}) = (a_1, b_1)$) are $1$ unit apart for each $1 \le i \le k$. Adel makes sure his path does not cross itself, that is, the $k$ dots are distinct. Find, with proof, the maximum possible value of $k$ in terms of $m$ and $n$.