This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2001 India Regional Mathematical Olympiad, 1

Tags:
Let $BE$ and $CF$ be the altitudes of an acute triangle $ABC$ with $E$ on $AC$ and $F$ on $AB$. Let $O$ be the point of intersection of $BE$ and $CF$. Take any line $KL$ through $O$ with $K$ on $AB$ and $L$ on $AC$. Suppose $M$ and $N$ are located on $BE$ and $CF$ respectively. such that $KM$ is perpendicular to $BE$ and $LN$ is perpendicular to $CF$. Prove that $FM$ is parallel to $EN$.

2010 LMT, 8

Tags:
The integer $111111$ is the product of five prime numbers. Determine the sum of these prime numbers.

2014-2015 SDML (High School), 11

Tags:
The numbers $1,2,\ldots,9$ are arranged so that the $1$st term is not $1$ and the $9$th term is not $9$. What is the probability that the third term is $3$? $\text{(A) }\frac{17}{75}\qquad\text{(B) }\frac{43}{399}\qquad\text{(C) }\frac{127}{401}\qquad\text{(D) }\frac{16}{19}\qquad\text{(E) }\frac{6}{7}$

2007 Harvard-MIT Mathematics Tournament, 25

Tags:
Two real numbers $x$ and $y$ are such that $8y^4+4x^2y^2+4xy^2+2x^3+2y^2+2x=x^2+1$. Find all possible values of $x+2y^2$

2023 MOAA, 3

Tags:
After the final exam, Mr. Liang asked each of his 17 students to guess the average final exam score. David, a very smart student, received a 100 and guessed the average would be 97. Each of the other 16 students guessed $30+\frac{n}{2}$ where $n$ was that student’s score. If the average of the final exam scores was the same as the average of the guesses, what was the average score on the final exam? [i]Proposed by Eric Wang[/i]

2002 Cono Sur Olympiad, 1

Students in the class of Peter practice the addition and multiplication of integer numbers.The teacher writes the numbers from $1$ to $9$ on nine cards, one for each number, and places them in an ballot box. Pedro draws three cards, and must calculate the sum and the product of the three corresponding numbers. Ana and Julián do the same, emptying the ballot box. Pedro informs the teacher that he has picked three consecutive numbers whose product is $5$ times the sum. Ana informs that she has no prime number, but two consecutive and that the product of these three numbers is $4$ times the sum of them. What numbers did Julian remove?

1993 Greece National Olympiad, 2

During a recent campaign for office, a candidate made a tour of a country which we assume lies in a plane. On the first day of the tour he went east, on the second day he went north, on the third day west, on the fourth day south, on the fifth day east, etc. If the candidate went $n^2/2$ miles on the $n^{\text{th}}$ day of this tour, how many miles was he from his starting point at the end of the $40^{\text{th}}$ day?

2021 USMCA, 8

Tags:
Let $ABCD$ be a parallelogram with $AB=CD=16$ and $BC=AD=24.$ Suppose the angle bisectors of $\angle A$ and $\angle D$ intersect $BC$ at $E$ and $F,$ respectively. Moreover, suppose $AE$ and $DF$ intersect at $P.$ Given that the sum of the areas of quadrilaterals $ABFP$ and $DCEP$ is $100,$ compute the area of the parallelogram.

2008 Romania National Olympiad, 1

Let $ ABC$ be a triangle and the points $ D\in (BC)$, $ E\in (CA)$, $ F\in (AB)$ such that \[ \frac {BD}{DC} \equal{} \frac {CE}{EA} \equal{} \frac {AF}{FB}.\] Prove that if the circumcenters of the triangles $ DEF$ and $ ABC$ coincide then $ ABC$ is equilateral.

2004 China Team Selection Test, 2

There are $ n \geq 5$ pairwise different points in the plane. For every point, there are just four points whose distance from which is $ 1$. Find the maximum value of $ n$.

2005 All-Russian Olympiad Regional Round, 10.7

10.7 Find all pairs $(a,b)$ of natural numbers s.t. $a^n+b^n$ is a perfect $n+1$th power for all $n\in\mathbb{N}$. ([i]V. Senderov[/i])

2022 Caucasus Mathematical Olympiad, 6

16 NHL teams in the first playoff round divided in pairs and to play series until 4 wins (thus the series could finish with score 4-0, 4-1, 4-2, or 4-3). After that 8 winners of the series play the second playoff round divided into 4 pairs to play series until 4 wins, and so on. After all the final round is over, it happens that $k$ teams have non-negative balance of wins (for example, the team that won in the first round with a score of 4-2 and lost in the second with a score of 4-3 fits the condition: it has $4+3=7$ wins and $2+4=6$ losses). Find the least possible $k$.

1992 IMO Longlists, 6

Suppose that n numbers $x_1, x_2, . . . , x_n$ are chosen randomly from the set $\{1, 2, 3, 4, 5\}$. Prove that the probability that $x_1^2+ x_2^2 +\cdots+ x_n^2 \equiv 0 \pmod 5$ is at least $\frac 15.$

2016 Grand Duchy of Lithuania, 1

Let $a, b$ and $c$ be positive real numbers such that $a + b + c = 1$. Prove that $$\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2} \le \frac{1}{4} \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

2006 China Second Round Olympiad, 3

Tags: inequalities
Suppose $A = {x|5x-a \le 0}$, $B = {x|6x-b > 0}$, $a,b \in \mathbb{N}$, and $A \cap B \cap \mathbb{N} = {2,3,4}$. The number of such pairs $(a,b)$ is ${ \textbf{(A)}\ 20\qquad\textbf{(B)}\ 25\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}} 42\qquad $

2009 IMO Shortlist, 4

For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 4

Given three squares as in the figure (where the vertex of B is touching square A --- the diagram had an error), where the largest square has area 1, and the area $ A$ is known. What is the area $ B$ of the smallest square? [img]http://i250.photobucket.com/albums/gg265/geometry101/NielsHenrikAbel1995Number4.jpg[/img] A. $ A/8$ B. $ \frac {A^2}{2}$ C. $ \frac {A^4}{4}$ D. $ A(1 \minus{} A)$ E. $ \frac {(1 \minus{} A)^2}{4}$

LMT Speed Rounds, 2016.3

Tags:
The squares of two positive integers differ by 2016. Find the maximum possible sum of the two integers. [i]Proposed by Clive Chan

2020 HMNT (HMMO), 2

Tags:
How many ways are there to arrange the numbers $\{ 1,2,3,4,5,6,7,8 \}$ in a circle so that every two adjacent elements are relatively prime? Consider rotations and reflections of the same arrangement to be indistinguishable.

2018 China Team Selection Test, 2

There are $32$ students in the class with $10$ interesting group. Each group contains exactly $16$ students. For each couple of students, the square of the number of the groups which are only involved by just one of the two students is defined as their $interests-disparity$. Define $S$ as the sum of the $interests-disparity$ of all the couples, $\binom{32}{2}\left ( =\: 496 \right )$ ones in total. Determine the minimal possible value of $S$.

2021 AMC 12/AHSME Spring, 2

Tags:
Under what conditions is $\sqrt{a^2+b^2}=a+b$ true, where $a$ and $b$ are real numbers? $\textbf{(A) }$ It is never true. $\textbf{(B) }$ It is true if and only if $ab=0$. $\textbf{(C) }$ It is true if and only if $a+b\ge 0$. $\textbf{(D) }$ It is true if and only if $ab=0$ and $a+b\ge 0$. $\textbf{(E) }$ It is always true.

KoMaL A Problems 2021/2022, A. 827

Let $n>1$ be a given integer. In a deck of cards the cards are of $n$ different suites and $n$ different values, and for each pair of a suite and a value there is exactly one such card. We shuffle the deck and distribute the cards among $n$ players giving each player $n$ cards. The players' goal is to choose a way to sit down around a round table so that they will be able to do the following: the first player puts down an arbitrary card, and then each consecutive player puts down a card that has a different suite and different value compared to the previous card that was put down on the table. For which $n$ is it possible that the cards were distributed in such a way that the players cannot achieve their goal? (The players work together, and they can see each other's cards.) Proposed by [i]Anett Kocsis[/i], Budapest

2009 Korea Junior Math Olympiad, 3

For two arbitrary reals $x, y$ which are larger than $0$ and less than $1.$ Prove that$$\frac{x^2}{x+y}+\frac{y^2}{1-x}+\frac{(1-x-y)^2}{1-y}\geq\frac{1}{2}.$$

1998 Akdeniz University MO, 5

Solve the equation system for real numbers: $$x_1+x_2=x_3^2$$ $$x_2+x_3=x_4^2$$ $$x_3+x_4=x_1^2$$ $$x_4+x_1=x_2^2$$

2012 Grigore Moisil Intercounty, 1

The absolute value of the sum of the elements of a real orthogonal matrix is at most the order of the matrix.