Found problems: 85335
2018 PUMaC Number Theory A, 1
Find the number of positive integers $n < 2018$ such that $25^n + 9^n$ is divisible by $13$.
2013 All-Russian Olympiad, 2
The inscribed and exscribed sphere of a triangular pyramid $ABCD$ touch her face $BCD$ at different points $X$ and $Y$. Prove that the triangle $AXY$ is obtuse triangle.
2015 CCA Math Bonanza, T5
Emily Thorne is throwing a Memorial Day Party to kick off the Summer in the Hamptons, and she is trying to figure out the seating arrangment for all of her guests. Emily saw that if she seated $4$ guests to a table, there would be $1$ guest left over (how sad); if she seated $5$ to a table, there would be $3$ guests left over; and if she seated $6$ to a table, there would again be $1$ guest left over. If there are at least $100$ but no more than $200$ guests (because she’s rich and her house is $20000$ square feet), what is the greatest possible number of guests?
[i]2015 CCA Math Bonanza Team Round #5[/i]
1999 CentroAmerican, 6
Denote $S$ as the subset of $\{1,2,3,\dots,1000\}$ with the property that none of the sums of two different elements in $S$ is in $S$. Find the maximum number of elements in $S$.
1986 Dutch Mathematical Olympiad, 2
Prove that for all positive integers $n$ holds that
$$\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+...+\frac{1}{(2n-1) \cdot 2n}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}$$
2019 PUMaC Team Round, 6
Pavel and Sara roll two, fair six-sided dice (with faces labeled from $ 1$ to $6$) but do not look at the result. A third-party observer whispers the product of the face-up numbers to Pavel and the sum of the face-up numbers to Sara.
Pavel and Sara are perfectly rational and truth-telling, and they both know this.
Pavel says, “With the information I have, I am unable to deduce the sum of the two numbers rolled.”
Sara responds, “Interesting! With the information I have, I am unable to deduce the product of the two numbers rolled.”
Pavel responds, “Wow! I still cannot deduce the sum. But I’m sure you know the product by now!”
What is the product?
2014 Contests, 1
In a bag there are $1007$ black and $1007$ white balls, which are randomly numbered $1$ to $2014$. In every step we draw one ball and put it on the table; also if we want to, we may choose two different colored balls from the table and put them in a different bag. If we do that we earn points equal to the absolute value of their differences. How many points can we guarantee to earn after $2014$ steps?
EMCC Guts Rounds, 2017
[i]Round 5[/i]
[b]p13.[/b] Kelvin Amphibian, a not-frog who lives on the coordinate plane, likes jumping around. Each step, he jumps either to the spot that is $1$ unit to the right and 2 units up, or the spot that is $2$ units to the right and $1$ unit up, from his current location. He chooses randomly among these two choices with equal probability. He starts at the origin and jumps for a long time. What is the probability that he lands on $(10, 8)$ at some time in his journey?
[b]p14.[/b] Points $A, B, C$, and $D$ are randomly chosen on the circumference of a unit circle. What is the probability that line segments $AB$ and $CD$ intersect inside the circle?
[b]p15.[/b] Let $P(x)$ be a quadratic polynomial with two consecutive integer roots. If it is also known that $\frac{P(2017)}
{P(2016)} = \frac{2016}{2017}$ , find the larger root of $P(x)$.
[u]Round 6[/u]
[b]p16.[/b] Let $S_n$ be the sum of reciprocals of the integers between $1$ and $n$ inclusive. Find a triple $(a, b, c)$ of positive integers such that $S_{2017} \cdot S_{2017} - S_{2016} \cdot S_{2018} = \frac{S_a+S_b}{c}$ .
[b]p17.[/b] Suppose that $m$ and $n$ are both positive integers. Alec has $m$ standard $6$-sided dice, each labelled $1$ to $6$ inclusive on the sides, while James has $n$ standard $12$-sided dice, each labelled $1$ to $12$ inclusive on the sides. They decide to play a game with their dice. They each toss all their dice simultaneously and then compute the sum of the numbers that come up on their dice. Whoever has a higher sum wins (if the sums are equal, they tie). Given that both players have an equal chance of winning, determine the minimum possible value of mn.
[b]p18.[/b] Overlapping rectangles $ABCD$ and $BEDF$ are congruent to each other and both have area $1$. Given that $A,C,E, F$ are the vertices of a square, find the area of the square.
[u]Round 7[/u]
[b]p19.[/b] Find the number of solutions to the equation $$||| ... |||||x| + 1| - 2| + 3| - 4| +... - 98| + 99| - 100| = 0$$
[b]p20.[/b] A split of a positive integer in base $10$ is the separation of the integer into two nonnegative integers, allowing leading zeroes. For example, $2017$ can be split into $2$ and $017$ (or $17$), $20$ and $17$, or $201$ and $7$. A split is called squarish if both integers are nonzero perfect squares. $49$ and $169$ are the two smallest perfect squares that have a squarish split ($4$ and $9$, $16$ and $9$ respectively). Determine all other perfect squares less than $2017$ with at least one squarish split.
[b]p21.[/b] Polynomial $f(x) = 2x^3 + 7x^2 - 3x + 5$ has zeroes $a, b$ and $c$. Cubic polynomial $g(x)$ with $x^3$-coefficient $1$ has zeroes $a^2$, $b^2$ and $c2$. Find the sum of coefficients of $g(x)$.
[u]Round 8[/u]
[b]p22.[/b] Two congruent circles, $\omega_1$ and $\omega_2$, intersect at points $A$ and $B$. The centers of $\omega_1$ and $\omega_2$ are $O_1$ and $O_2$ respectively. The arc $AB$ of $\omega_1$ that lies inside $\omega_2$ is trisected by points $P$ and $Q$, with the points lying in the order $A, P, Q,B$. Similarly, the arc $AB$ of $\omega_2$ that lies inside $\omega_1$ is trisected by points $R$ and $S$, with the points lying in the order $A,R, S,B$. Given that $PQ = 1$ and $PR =\sqrt2$, find the measure of $\angle AO_1B$ in degrees.
[b]p23.[/b] How many ordered triples of $(a, b, c)$ of integers between $-10$ and $10$ inclusive satisfy the equation $-abc = (a + b)(b + c)(c + a)$?
[b]p24.[/b] For positive integers $n$ and $b$ where $b > 1$, define $s_b(n)$ as the sum of digits in the base-$b$ representation of $n$. A positive integer $p$ is said to dominate another positive integer $q$ if for all positive integers $n$, $s_p(n)$ is greater than or equal to $s_q(n)$. Find the number of ordered pairs $(p, q)$ of distinct positive integers between $2$ and $100$ inclusive such that $p$ dominates $q$.
PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h2936487p26278546]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022 Taiwan TST Round 2, C
A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either:[list][*]the rabbit cannot move; or
[*]the hunter can determine the cell in which the rabbit started.[/list]Decide whether there exists a winning strategy for the hunter.
[i]Proposed by Aron Thomas[/i]
2006 AMC 10, 15
Rhombus $ ABCD$ is similar to rhombus $ BFDE$. The area of rhombus $ ABCD$ is 24, and $ \angle BAD \equal{} 60^\circ$. What is the area of rhombus $ BFDE$?
[asy]
size(180);
defaultpen(linewidth(0.7)+fontsize(11));
pair A=origin, B=(2,0), C=(3, sqrt(3)), D=(1, sqrt(3)), E=(1, 1/sqrt(3)), F=(2, 2/sqrt(3));
pair point=(3/2, sqrt(3)/2);
draw(B--C--D--A--B--F--D--E--B);
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));[/asy]
$ \textbf{(A) } 6 \qquad \textbf{(B) } 4\sqrt {3} \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 6\sqrt {3}$
LMT Guts Rounds, 2020 F19
Find the second smallest prime factor of $18!+1.$
[i]Proposed by Kaylee Ji[/i]
1987 IMO Longlists, 10
In a Cartesian coordinate system, the circle $C_1$ has center $O_1(-2, 0)$ and radius $3$. Denote the point $(1, 0)$ by $A$ and the origin by $O$.Prove that there is a constant $c > 0$ such that for every $X$ that is exterior to $C1$,
\[OX- 1 \geq c \min\{AX,AX^2\}.\]
Find the largest possible $c.$
2006 Thailand Mathematical Olympiad, 2
Triangle $\vartriangle ABC$ has side lengths $AB = 2$, $CA = 3$ and $BC = 4$. Compute the radius of the circle centered on $BC$ that is tangent to both $AB$ and $AC$.
2006 China Second Round Olympiad, 12
Suppose there are 8 white balls and 2 red balls in a packet. Each time one ball is drawn and replaced by a white one. Find the probability that the last red ball is drawn in the fourth draw.
Oliforum Contest III 2012, 4
Show that if $a \ge b \ge c \ge 0$ then
$$a^2b(a - b) + b^2c(b - c) + c^2a(c - a) \ge 0.$$
2022 Serbia JBMO TST, 1
Prove that for all positive real numbers $a$, $b$ the following inequality holds:
\begin{align*}
\sqrt{\frac{a^2+b^2}{2}}+\frac{2ab}{a+b}\ge \frac{a+b}{2}+ \sqrt{ab}
\end{align*}
When does equality hold?
1985 AMC 8, 15
How many whole numbers between $ 100$ and $ 400$ contain the digit $ 2$?
\[ \textbf{(A)}\ 100 \qquad
\textbf{(B)}\ 120 \qquad
\textbf{(C)}\ 138 \qquad
\textbf{(D)}\ 140 \qquad
\textbf{(E)}\ 148
\]
2006 India IMO Training Camp, 3
Let $ABC$ be an equilateral triangle, and let $D,E$ and $F$ be points on $BC,BA$ and $AB$ respectively. Let $\angle BAD= \alpha, \angle CBE=\beta$ and $\angle ACF =\gamma$. Prove that if $\alpha+\beta+\gamma \geq 120^\circ$, then the union of the triangular regions $BAD,CBE,ACF$ covers the triangle $ABC$.
2007 iTest Tournament of Champions, 2
In the game of [i]Winners Make Zeros[/i], a pair of positive integers $(m,n)$ is written on a sheet of paper. Then the game begins, as the players make the following legal moves:
[list]
[*] If $m\geq n$, the player choose a positive integer $c$ such that $m-cn\geq 0$, and replaces $(m,n)$ with $(m-cn,n)$.
[*] If $m<n$, the player choose a positive integer $c$ such that $n-cm\geq 0$, and replaces $(m,n)$ with $(m,n-cm)$.
[/list]
When $m$ or $n$ becomes $0$, the game ends, and the last player to have moved is declared the winner. If $m$ and $n$ are originally $2007777$ and $2007$, find the largest choice the first player can make for $c$ (on his first move) such that the first player has a winning strategy after that first move.
2021/2022 Tournament of Towns, P4
Consider a white 100×100 square. Several cells (not necessarily neighbouring) were
painted black. In each row or column that contains some black cells their number
is odd. Hence we may consider the middle black cell for this row or column (with
equal numbers of black cells in both opposite directions). It so happened that all
the middle black cells of such rows lie in different columns and all the middle black
cells of the columns lie in different rows.
a) Prove that there exists a cell that is both the middle black cell of its row and the middle black cell of its column.
b) Is it true that any middle black cell of a row is also a middle black cell of its column?
1966 AMC 12/AHSME, 26
Let $m$ be a positive integer and let the lines $13x+11y=700$ and $y=mx-1$ intersect in a point whose coordinates are integers. Then $m$ is:
$\text{(A)} \ 4 \qquad \text{(B)} \ 5 \qquad \text{(C)} \ 6 \qquad \text{(D)} \ 7 \qquad \text{(E)} \ \text{one of the integers}~ 4,5,6,7~\text{and one other positive integer}$
2018-2019 SDML (High School), 13
A steel cube has edges of length $3$ cm, and a cone has a diameter of $8$ cm and a height of $24$ cm. The cube is placed in the cone so that one of its interior diagonals coincides with the axis of the cone. What is the distance, in cm, between the vertex of the cone and the closest vertex of the cube?
[NEEDS DIAGRAM]
$ \mathrm{(A) \ } \frac{12\sqrt6-3\sqrt3}{4} \qquad \mathrm{(B) \ } \frac{9\sqrt6-3\sqrt3}{2} \qquad \mathrm {(C) \ } 5\sqrt3 \qquad \mathrm{(D) \ } 6\sqrt6 - \sqrt3 \qquad \mathrm{(E) \ } 6\sqrt6$
2006 All-Russian Olympiad Regional Round, 9.3
It is known that $x^2_1+ x^2_2+...+ x^2_6= 6$ and $x_1 + x_2 +....+ x_6 = 0.$ Prove that $ x_1x_2....x_6 \le \frac12$ .
.
2012 LMT, Team Round
[b]p1.[/b] What is $7\%$ of one half of $11\%$ of $20000$ ?
[b]p2.[/b] Three circles centered at $A, B$, and $C$ are tangent to each other. Given that $AB = 8$, $AC = 10$, and $BC = 12$, find the radius of circle $ A$.
[b]p3. [/b]How many positive integer values of $x$ less than $2012$ are there such that there exists an integer $y$ for which $\frac{1}{x} +\frac{2}{2y+1} =\frac{1}{y}$ ?
[b]p4. [/b]The positive difference between $ 8$ and twice $x$ is equal to $11$ more than $x$. What are all possible values of $x$?
[b]p5.[/b] A region in the coordinate plane is bounded by the equations $x = 0$, $x = 6$, $y = 0$, and $y = 8$. A line through $(3, 4)$ with slope $4$ cuts the region in half. Another line going through the same point cuts the region into fourths, each with the same area. What is the slope of this line?
[b]p6.[/b] A polygon is composed of only angles of degrees $138$ and $150$, with at least one angle of each degree. How many sides does the polygon have?
[b]p7.[/b] $M, A, T, H$, and $L$ are all not necessarily distinct digits, with $M \ne 0$ and $L \ne 0$. Given that the sum $MATH +LMT$, where each letter represents a digit, equals $2012$, what is the average of all possible values of the three-digit integer $LMT$?
[b]p8. [/b]A square with side length $\sqrt{10}$ and two squares with side length $\sqrt{7}$ share the same center. The smaller squares are rotated so that all of their vertices are touching the sides of the larger square at distinct points. What is the distance between two such points that are on the same side of the larger square?
[b]p9.[/b] Consider the sequence $2012, 12012, 20120, 20121, ...$. This sequence is the increasing sequence of all integers that contain “$2012$”. What is the $30$th term in this sequence?
[b]p10.[/b] What is the coefficient of the $x^5$ term in the simplified expansion of $(x +\sqrt{x} +\sqrt[3]{x})^{10}$ ?
PS. You had better use hide for answers.
1999 Ukraine Team Selection Test, 4
If $n \in N$ and $0 < x <\frac{\pi}{2n}$, prove the inequality $\frac{\sin 2x}{\sin x}+\frac{\sin 3x}{\sin 2x} +...+\frac{\sin (n+1)x}{\sin nx} < 2\frac{\cos x}{\sin^2 x}$.
.