This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 Harvard-MIT Mathematics Tournament, 2

Tags: hmmt
I have five different pairs of socks. Every day for five days, I pick two socks at random without replacement to wear for the day. Find the probability that I wear matching socks on both the third day and the fifth day.

2025 Taiwan Mathematics Olympiad, 5

Two fixed circles $\omega$ and $\Omega$ intersect at two distinct points $A$ and $B$. Let $C$ and $D$ be two fixed points on the circle $\omega$. Let $P$ be a moving point on $\omega$. Line $PA$ meets circle $\Omega$ again at $Q$. Prove that the second intersection $R$ of two circumcircles of triangles $QPC$ and $QBD$ always lies on a fixed circle. [i]Proposed by buratinogigle[/i]

2023 AMC 12/AHSME, 5

Tags: probability
Janet rolls a standard 6-sided die 4 times and keeps a running total of the numbers she rolls. What is the probability that at some point, her running total will equal 3? $\textbf{(A) }\frac{2}{9}\qquad\textbf{(B) }\frac{49}{216}\qquad\textbf{(C) }\frac{25}{108}\qquad\textbf{(D) }\frac{17}{72}\qquad\textbf{(E) }\frac{13}{54}$

2007 Stanford Mathematics Tournament, 3

Tags:
A clock currently shows the time $10:10$. The obtuse angle between the hands measures $x$ degrees. What is the next time that the angle between the hands will be $x$ degrees? Round your answer to the nearest minute.

1990 AMC 12/AHSME, 29

Tags:
A subset of the integers $1, 2, ..., 100$ has the property that none of its members is 3 times another. What is the largest number of members such a subset can have? $ \textbf{(A)}\ 50 \qquad\textbf{(B)}\ 66 \qquad\textbf{(C)}\ 67 \qquad\textbf{(D)}\ 76 \qquad\textbf{(E)}\ 78 $

2008 Nordic, 3

Let $ABC$ be a triangle and $D,E$ be points on $BC,CA$ such that $AD,BE$ are angle bisectors of $\triangle ABC$. Let $F,G$ be points on the circumcircle of $\triangle ABC$ such that $AF||DE$ and $FG||BC$. Prove that $\frac{AG}{BG}= \frac{AB+AC}{AB+BC}$.

2016 Online Math Open Problems, 13

Tags:
For a positive integer $n$, let $f(n)$ be the integer formed by reversing the digits of $n$ (and removing any leading zeroes). For example $f(14172)=27141$. Define a sequence of numbers $\{a_n\}_{n\ge 0}$ by $a_0=1$ and for all $i\ge 0$, $a_{i+1}=11a_i$ or $a_{i+1}=f(a_i)$ . How many possible values are there for $a_8$? [i]Proposed by James Lin[/i]

2022 Saudi Arabia BMO + EGMO TST, 2.4

Find all functions $f : R \to R$ such that $$2f(x)f(x + y) -f(x^2) =\frac{x}{2}(f(2x) + 4f(f(y)))$$ for all $x, y \in R$.

1977 Putnam, B6

Tags:
Let $H$ be a subgroup with $h$ elements in a group $G.$ Suppose that $G$ has an element $a$ such that for all $x$ in $H,$ $(xa)^3=1,$ the identity. In $G$, let $P$ be the subset of all products $x_1ax_2a\dots x_na,$ with $n$ a positive integer and the $x_i$ in $H.$ (a) Show that $P$ is a finite set. (b) Show that, in fact, $P$ has no more that $3h^2$ elements.

2018 Bosnia and Herzegovina Junior BMO TST, 4

Tags: algebra
Let $a,b,c$ be real numbers which satisfy: $$a+b+c=2$$ $$a^2+b^2+c^2=2$$ Prove that at least one of numbers $|a-b|, |b-c|, |c-a|$ is greater or equal than $1$.

2016-2017 SDML (Middle School), 6

Tags:
There are $4$ pairs of men and women, and all $8$ people are arranged in a row so that in each pair the woman is somewhere to the left of the man. How many such arrangements are there?

2013 AMC 10, 24

A positive integer $n$ is [i]nice[/i] if there is a positive integer $m$ with exactly four positive divisors (including $1$ and $m$) such that the sum of the four divisors is equal to $n$. How many numers in the set $\{2010, 2011, 2012,\ldots,2019\}$ are nice? ${ \textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D}}\ 4\qquad\textbf{(E)}\ 5 $

1986 Brazil National Olympiad, 3

The Poincare plane is a half-plane bounded by a line $R$. The lines are taken to be (1) the half-lines perpendicular to $R$, and (2) the semicircles with center on $R$. Show that given any line $L$ and any point $P$ not on $L$, there are infinitely many lines through $P$ which do not intersect $L$. Show that if $ ABC$ is a triangle, then the sum of its angles lies in the interval $(0, \pi)$.

2022 239 Open Mathematical Olympiad, 2

Tags: geometry , incircle
Point $I{}$ is the center of the circle inscribed in the quadrilateral $ABCD$. Prove that there is a point $K{}$ on the ray $CI$ such that $\angle KBI=\angle KDI=\angle BAI$.

1964 All Russian Mathematical Olympiad, 047

Tags: similar , geometry
Four perpendiculars are drawn from the vertices of a convex quadrangle to its diagonals. Prove that their bases make a quadrangle similar to the given one.

2022 Korea National Olympiad, 6

$n(\geq 4)$ islands are connected by bridges to satisfy the following conditions: [list] [*]Each bridge connects only two islands and does not go through other islands. [*]There is at most one bridge connecting any two different islands. [*]There does not exist a list $A_1, A_2, \ldots, A_{2k}(k \geq 2)$ of distinct islands that satisfy the following: [center]For every $i=1, 2, \ldots, 2k$, the two islands $A_i$ and $A_{i+1}$ are connected by a bridge. (Let $A_{2k+1}=A_1$)[/center] [/list] Prove that the number of the bridges is at most $\frac{3(n-1)}{2}$.

2020 Brazil Team Selection Test, 4

A quadruple of integers $(a, b, c, d)$ is said good if $ad-bc=2020$. Two good quadruplets are said to be dissimilar if it is not possible to obtain one from the other using a finite number of applications of the following operations: $$(a,b,c,d) \rightarrow (-c,-d,a,b)$$ $$(a,b,c,d) \rightarrow (a,b,c+a,d+b)$$ $$(a,b,c,d) \rightarrow (a,b,c-a,d-b)$$ Let $A$ be a set of $k$ good quadruples, two by two dissimilar. Show that $k \leq 4284$.

1971 IMO Longlists, 34

Let $T_k = k - 1$ for $k = 1, 2, 3,4$ and \[T_{2k-1} = T_{2k-2} + 2^{k-2}, T_{2k} = T_{2k-5} + 2^k \qquad (k \geq 3).\] Show that for all $k$, \[1 + T_{2n-1} = \left[ \frac{12}{7}2^{n-1} \right] \quad \text{and} \quad 1 + T_{2n} = \left[ \frac{17}{7}2^{n-1} \right],\] where $[x]$ denotes the greatest integer not exceeding $x.$

2018 India IMO Training Camp, 2

Tags: geometry
Let $A,B,C$ be three points in that order on a line $\ell$ in the plane, and suppose $AB>BC$. Draw semicircles $\Gamma_1$ and $\Gamma_2$ respectively with $AB$ and $BC$ as diameters, both on the same side of $\ell$. Let the common tangent to $\Gamma_1$ and $\Gamma_2$ touch them respectively at $P$ and $Q$, $P\ne Q$. Let $D$ and $E$ be points on the segment $PQ$ such that the semicircle $\Gamma_3$ with $DE$ as diameter touches $\Gamma_2$ in $S$ and $\Gamma_1$ in $T$. [list=1][*]Prove that $A,C,S,T$ are concyclic. [*]Prove that $A,C,D,E$ are concyclic.[/list]

2013 Bundeswettbewerb Mathematik, 4

Consider the Pascal's triangle in the figure where the binomial coefficients are arranged in the usual manner. Select any binomial coefficient from anywhere except the right edge of the triangle and labet it $C$. To the right of $C$, in the horizontal line, there are $t$ numbers, we denote them as $a_1,a_2,\cdots,a_t$, where $a_t = 1$ is the last number of the series. Consider the line parallel to the left edge of the triangle containing $C$, there will only be $t$ numbers diagonally above $C$ in that line. We successively name them as $b_1,b_2,\cdots,b_t$, where $b_t = 1$. Show that \[b_ta_1-b_{t-1}a_2+b_{t-2}a_3-\cdots+(-1)^{t-1}b_1a_t = 1\]. For example, Suppose you choose $\binom41 = 4$ (see figure), then $t = 3$, $a_1 = 6, a_2 = 4, a_3 = 1$ and $b_1 = 3, b_2 = 2, b_3 = 1$. \[\begin{array}{ccccccccccc} & & & & & 1 & & & & & \\ & & & & 1 & & \underset{b_3}{1} & & & & \\ & & & 1 & & \underset{b_2}{2} & & 1 & & & \\ & & 1 & & \underset{b_1}{3} & & 3 & & 1 & & \\ & 1 & & \boxed{4} & & \underset{a_1}{6} & & \underset{a_2}{4} & & \underset{a_3}{1} & \\ \ldots & & \ldots & & \ldots & & \ldots & & \ldots & & \ldots \\ \end{array}\]

2012-2013 SDML (Middle School), 12

Tags:
How many $2$-digit integers have an equal number of odd and even positive divisors? $\text{(A) }11\qquad\text{(B) }12\qquad\text{(C) }22\qquad\text{(D) }23\qquad\text{(E) }45$

2014 Kosovo National Mathematical Olympiad, 1

Prove that for any integer the number $2n^3+3n^2+7n$ is divisible by $6$.

IV Soros Olympiad 1997 - 98 (Russia), grade8

[b]p1.[/b] a) There are barrels weighing $1, 2, 3, 4, ..., 19, 20$ pounds. Is it possible to distribute them equally (by weight) into three trucks? b) The same question for barrels weighing $1, 2, 3, 4, ..., 9, 10$ pounds. [b]p2.[/b] There are apples and pears in the basket. If you add the same number of apples there as there are now pears (in pieces), then the percentage of apples will be twice as large as what you get if you add as many pears to the basket as there are now apples. What percentage of apples are in the basket now? [b]p3.[/b] What is the smallest number of integers from $1000$ to $1500$ that must be marked so that any number $x$ from $1000$ to $1500$ differs from one of the marked numbers by no more than $10\% $of the value of $x$? [b]p4.[/b] Draw a perpendicular from a given point to a given straight line, having a compass and a short ruler (the length of the ruler is significantly less than the distance from the point to the straight line; the compass reaches from the point to the straight line “with a margin”). [b]p5.[/b] There is a triangle on the chessboard (left figure). It is allowed to roll it around the sides (in this case, the triangle is symmetrically reflected relative to the side around which it is rolled). Can he, after a few steps, take the position shown in right figure? [img]https://cdn.artofproblemsolving.com/attachments/f/5/eeb96c92f30b837e7ed2cdf7cf77b0fbb8ceda.png[/img] [b]p6.[/b] The natural number $a$ is less than the natural number $b$. In this case, the sum of the digits of number $a$ is $100$ less than the sum of the digits of number $b$. Prove that between the numbers $ a$ and $b$ there is a number whose sum of digits is $43$ more than the sum of the digits of $a$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

2007 Iran MO (3rd Round), 1

Let $ n$ be a natural number, such that $ (n,2(2^{1386}\minus{}1))\equal{}1$. Let $ \{a_{1},a_{2},\dots,a_{\varphi(n)}\}$ be a reduced residue system for $ n$. Prove that:\[ n|a_{1}^{1386}\plus{}a_{2}^{1386}\plus{}\dots\plus{}a_{\varphi(n)}^{1386}\]

2007 Estonia National Olympiad, 5

The identifier of a book is an n-tuple of numbers 0, 1, .... , 9, followed by a checksum. The checksum is computed by a fixed rule that satisfies the following property: whenever one increases a single number in the n-tuple (without modifying the other numbers), the checksum also increases. Find the smallest possible number of required checksums if all possible n-tuples are in use.