This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2017 Moldova EGMO TST, 1

Tags: inequalities
Let $a,b,c\geq 0$. Prove: $$\frac{1+a+a^{2}}{1+b+c^{2}}+\frac{1+b+b^{2}}{1+c+a^{2}}+\frac{1+c+c^{2}}{1+a+b^{2}}\geq 3$$

2008 Iran MO (3rd Round), 2

Tags: geometry
Consider six arbitrary points in space. Every two points are joined by a segment. Prove that there are two triangles that can not be separated. [img]http://i38.tinypic.com/35n615y.png[/img]

1999 Croatia National Olympiad, Problem 3

Let $(a_n)$ be defined by $a_1=a_2=1$ and $a_n=a_{n-1}+a_{n-2}$ for $n>2$. Compute the sum $\frac{a_1}2+\frac{a_2}{2^2}+\frac{a_3}{2^3}+\ldots$.

2009 Ukraine National Mathematical Olympiad, 2

Tags:
There is convex $2009$-gon on the plane. [b]a)[/b] Find the greatest number of vertices of $2009$-gon such that no two forms the side of the polygon. [b]b)[/b] Find the greatest number of vertices of $2009$-gon such that among any three of them there is one that is not connected with other two by side.

Sri Lankan Mathematics Challenge Competition 2022, P1

[b]Problem 1[/b] : Find the smallest positive integer $n$, such that $\sqrt[5]{5n}$, $\sqrt[6]{6n}$ , $\sqrt[7]{7n}$ are integers.

2009 Balkan MO Shortlist, A6

We denote the set of nonzero integers and the set of non-negative integers with $\mathbb Z^*$ and $\mathbb N_0$, respectively. Find all functions $f:\mathbb Z^* \to \mathbb N_0$ such that: $a)$ $f(a+b)\geq min(f(a), f(b))$ for all $a,b$ in $\mathbb Z^*$ for which $a+b$ is in $\mathbb Z^*$. $b)$ $f(ab)=f(a)+f(b)$ for all $a,b$ in $\mathbb Z^*$.

2013 Balkan MO Shortlist, N6

Prove that there do not exist distinct prime numbers $p$ and $q$ and a positive integer $n$ satisfying the equation $p^{q-1}- q^{p-1}=4n^3$

2021 Miklós Schweitzer, 5

Let $f(x)=\frac{1+\cos(2 \pi x)}{2}$, for $x \in \mathbb{R}$, and $f^n=\underbrace{ f \circ \cdots \circ f}_{n}$. Is it true that for Lebesgue almost every $x$, $\lim_{n \to \infty} f^n(x)=1$?

Putnam 1939, B2

Tags:
Evaluate $\int_{1}^{3} ( (x - 1)(3 - x) )^{\dfrac{-1}{2}} dx$ and $\int_{1}^{\infty} (e^{x+1} + e^{3-x})^{-1} dx.$

2010 Contests, 1

Prove that in each year , the $13^{th}$ day of some month occurs on a Friday .

2014 Contests, 3

Let $n$ be an even positive integer, and let $G$ be an $n$-vertex graph with exactly $\tfrac{n^2}{4}$ edges, where there are no loops or multiple edges (each unordered pair of distinct vertices is joined by either 0 or 1 edge). An unordered pair of distinct vertices $\{x,y\}$ is said to be [i]amicable[/i] if they have a common neighbor (there is a vertex $z$ such that $xz$ and $yz$ are both edges). Prove that $G$ has at least $2\textstyle\binom{n/2}{2}$ pairs of vertices which are amicable. [i]Zoltán Füredi (suggested by Po-Shen Loh)[/i]

2015 Sharygin Geometry Olympiad, P19

Let $L$ and $K$ be the feet of the internal and the external bisector of angle $A$ of a triangle $ABC$. Let $P$ be the common point of the tangents to the circumcircle of the triangle at $B$ and $C$. The perpendicular from $L$ to $BC$ meets $AP$ at point $Q$. Prove that $Q$ lies on the medial line of triangle $LKP$.

1979 AMC 12/AHSME, 26

The function $f$ satisfies the functional equation \[f(x) +f(y) = f(x + y ) - xy - 1\] for every pair $x,~ y$ of real numbers. If $f( 1) = 1$, then the number of integers $n \neq 1$ for which $f ( n ) = n$ is $\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{infinite}$

1964 IMO, 6

In tetrahedron $ABCD$, vertex $D$ is connected with $D_0$, the centrod if $\triangle ABC$. Line parallel to $DD_0$ are drawn through $A,B$ and $C$. These lines intersect the planes $BCD, CAD$ and $ABD$ in points $A_2, B_1,$ and $C_1$, respectively. Prove that the volume of $ABCD$ is one third the volume of $A_1B_1C_1D_0$. Is the result if point $D_o$ is selected anywhere within $\triangle ABC$?

Estonia Open Junior - geometry, 1996.1.4

In a trapezoid, the two non parallel sides and a base have length $1$, while the other base and both the diagonals have length $a$. Find the value of $a$.

1985 AMC 12/AHSME, 14

Tags:
Exactly three of the interior angles of a convex polygon are obtuse. What is the maximum number of sides of such a polygon? $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 7 \qquad \textbf{(E)}\ 8$

2019 BMT Spring, 8

Let $(k_i)$ be a sequence of unique nonzero integers such that $x^2- 5x + k_i$ has rational solutions. Find the minimum possible value of $$\frac15 \sum_{i=1}^{\infty} \frac{1}{k_i}$$

2021 India National Olympiad, 6

Let $\mathbb{R}[x]$ be the set of all polynomials with real coefficients. Find all functions $f: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ satisfying the following conditions: [list] [*] $f$ maps the zero polynomial to itself, [*] for any non-zero polynomial $P \in \mathbb{R}[x]$, $\text{deg} \, f(P) \le 1+ \text{deg} \, P$, and [*] for any two polynomials $P, Q \in \mathbb{R}[x]$, the polynomials $P-f(Q)$ and $Q-f(P)$ have the same set of real roots. [/list] [i]Proposed by Anant Mudgal, Sutanay Bhattacharya, Pulkit Sinha[/i]

2024 International Zhautykov Olympiad, 4

Tags: algebra
Ten distinct positive real numbers are given and the sum of each pair is written (So 45 sums). Between these sums there are 5 equal numbers. If we calculate product of each pair, find the biggest number $k$ such that there may be $k$ equal numbers between them.

2016 PUMaC Team, 4

Tags: algebra
For x > 1, let $f(x) = log_2(x + log_2(x + log_2(x +...)))$. Compute $\Sigma_{k=2}^{10} f^{-1}(k)$

2016 Harvard-MIT Mathematics Tournament, 33

Tags:
$\textbf{(Lucas Numbers)}$ The Lucas numbers are defined by $L_0 = 2$, $L_1 = 1$, and $L_{n+2} = L_{n+1} + L_n$ for every $n \ge 0$. There are $N$ integers $1 \le n \le 2016$ such that $L_n$ contains the digit $1$. Estimate $N$. An estimate of $E$ earns $\left\lfloor 20 - 2|N-E| \right\rfloor$ or $0$ points, whichever is greater.

2023 Thailand Mathematical Olympiad, 5

Tags: geometry
Let $\ell$ be a line in the plane and let $90^\circ<\theta<180^\circ$. Consider any distinct points $P,Q,R$ that satisfy the following: (i) $P$ lies on $\ell$ and $PQ$ is perpendicular to $\ell$ (ii) $R$ lies on the same side of $\ell$ as $Q$, and $R$ doesn’t lie on $\ell$ (iii) for any points $A,B$ on $\ell$, if $\angle ARB=\theta$ then $\angle AQB \geq \theta$. Find the minimum value of $\angle PQR$.

1990 IMO Longlists, 48

Tags: algebra
Prove that $\sqrt 2 +\sqrt 3 +\sqrt{1990}$ is irrational.

2002 Tournament Of Towns, 2

A cube is cut by a plane such that the cross section is a pentagon. Show there is a side of the pentagon of length $\ell$ such that the inequality holds: \[ |\ell-1|>\frac{1}{5} \]

2020 Brazil Team Selection Test, 4

Let $n$ be an odd positive integer. Some of the unit squares of an $n\times n$ unit-square board are colored green. It turns out that a chess king can travel from any green unit square to any other green unit squares by a finite series of moves that visit only green unit squares along the way. Prove that it can always do so in at most $\tfrac{1}{2}(n^2-1)$ moves. (In one move, a chess king can travel from one unit square to another if and only if the two unit squares share either a corner or a side.) [i]Proposed by Nikolai Beluhov[/i]