This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2019 Mid-Michigan MO, 5-6

[b]p1.[/b] It takes $12$ months for Santa Claus to pack gifts. It would take $20$ months for his apprentice to do the job. If they work together, how long will it take for them to pack the gifts? [b]p2.[/b] All passengers on a bus sit in pairs. Exactly $2/5$ of all men sit with women, exactly $2/3$ of all women sit with men. What part of passengers are men? [b]p3.[/b] There are $100$ colored balls in a box. Every $10$-tuple of balls contains at least two balls of the same color. Show that there are at least $12$ balls of the same color in the box. [b]p4.[/b] There are $81$ wheels in storage marked by their two types, say first and second type. Wheels of the same type weigh equally. Any wheel of the second type is much lighter than a wheel of the first type. It is known that exactly one wheel is marked incorrectly. Show that one can determine which wheel is incorrectly marked with four measurements. [b]p5.[/b] Remove from the figure below the specified number of matches so that there are exactly $5$ squares of equal size left: (a) $8$ matches (b) $4$ matches [img]https://cdn.artofproblemsolving.com/attachments/4/b/0c5a65f2d9b72fbea50df12e328c024a0c7884.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Czech and Slovak Olympiad III A, 1

Let be $n$ a positive integer. Denote all its (positive) divisors as $1=d_1<d_2<\cdots<d_{k-1}<d_k=n$. Find all values of $n$ satisfying $d_5-d_3=50$ and $11d_5+8d_7=3n$. (Day 1, 1st problem author: Matúš Harminc)

2016 SDMO (High School), 4

Let triangle $ABC$ be an isosceles triangle with $AB = AC$. Suppose that the angle bisector of its angle $\angle B$ meets the side $AC$ at a point $D$ and that $BC = BD+AD$. Determine $\angle A$.

2018 Hanoi Open Mathematics Competitions, 7

For a special event, the five Vietnamese famous dishes including Phở, (Vietnamese noodle), Nem (spring roll), Bún Chả (grilled pork noodle), Bánh cuốn (stuffed pancake), and Xôi gà (chicken sticky rice) are the options for the main courses for the dinner of Monday, Tuesday, and Wednesday. Every dish must be used exactly one time. How many choices do we have?

2009 Harvard-MIT Mathematics Tournament, 4

Tags: trigonometry
If $\tan x + \tan y = 4$ and $\cot x + \cot y = 5$, compute $\tan(x + y)$.

1991 Arnold's Trivium, 53

Investigate the singular points of the differential form $dt = dx/y$ on the compact Riemann surface $y^2/2 + U(x) = E$, where $U$ is a polynomial and $E$ is not a critical value.

1989 IMO Longlists, 5

Tags: function , algebra
Let $ n > 1$ be a fixed integer. Define functions $ f_0(x) \equal{} 0,$ $ f_1(x) \equal{} 1 \minus{} \cos(x),$ and for $ k > 0,$ \[ f_{k\plus{}1}(x) \equal{} f_k(x) \cdot \cos(x) \minus{} f_{k\minus{}1}(x).\] If $ F(x) \equal{} \sum^n_{r\equal{}1} f_r(x),$ prove that [b](a)[/b] $ 0 < F(x) < 1$ for $ 0 < x < \frac{\pi}{n\plus{}1},$ and [b](b)[/b] $ F(x) > 1$ for $ \frac{\pi}{n\plus{}1} < x < \frac{\pi}{n}.$

2005 Croatia National Olympiad, 3

Tags: geometry
Find the locus of points inside a trihedral angle such that the sum of their distances from the faces of the trihedral angle has a fixed positive value $a$.

2011 Morocco National Olympiad, 2

Tags:
Compute the sum \[S=1+2+3-4-5+6+7+8-9-10+\dots-2010\] where every three consecutive $+$ are followed by two $-$.

1962 AMC 12/AHSME, 32

If $ x_{k\plus{}1} \equal{} x_k \plus{} \frac12$ for $ k\equal{}1, 2, \dots, n\minus{}1$ and $ x_1\equal{}1,$ find $ x_1 \plus{} x_2 \plus{} \dots \plus{} x_n.$ $ \textbf{(A)}\ \frac{n\plus{}1}{2} \qquad \textbf{(B)}\ \frac{n\plus{}3}{2} \qquad \textbf{(C)}\ \frac{n^2\minus{}1}{2} \qquad \textbf{(D)}\ \frac{n^2\plus{}n}{4} \qquad \textbf{(E)}\ \frac{n^2\plus{}3n}{4}$

2019 ELMO Shortlist, N2

Let $f:\mathbb N\to \mathbb N$. Show that $f(m)+n\mid f(n)+m$ for all positive integers $m\le n$ if and only if $f(m)+n\mid f(n)+m$ for all positive integers $m\ge n$. [i]Proposed by Carl Schildkraut[/i]

2006 South East Mathematical Olympiad, 4

Tags: algebra
Given any positive integer $n$, let $a_n$ be the real root of equation $x^3+\dfrac{x}{n}=1$. Prove that (1) $a_{n+1}>a_n$; (2) $\sum_{i=1}^{n}\frac{1}{(i+1)^2a_i} <a_n$.

1996 AIME Problems, 2

For each real number $x,$ let $\lfloor x\rfloor$ denote the greatest integer that does not exceed $x.$ For how many positive integers $n$ is it true that $n<1000$ and that $\lfloor \log_2 n\rfloor$ is a positive even integer.

2024 239 Open Mathematical Olympiad, 1

Let $f:\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ be a continuous function such that $f(0)=0$ and $$f(x)+f(f(x))+f(f(f(x)))=3x$$ for all $x>0$. Show that $f(x)=x$ for all $x>0$.

2011 Lusophon Mathematical Olympiad, 2

A non-negative integer $n$ is said to be [i]squaredigital[/i] if it equals the square of the sum of its digits. Find all non-negative integers which are squaredigital.

2003 India IMO Training Camp, 3

Tags: function , algebra
Find all functions $f: \mathbb R \to \mathbb R$ such that for all reals $x$ and $y$, \[f(x+y)+f(x)f(y)=f(xy)+f(x)+f(y).\]

2012 Kosovo National Mathematical Olympiad, 2

If $a>1,b>1$ are the legths of the catheti of an right triangle and $c$ the length of its hypotenuse, prove that $a+b\leq c\sqrt 2$

2009 USA Team Selection Test, 7

Find all triples $ (x,y,z)$ of real numbers that satisfy the system of equations \[ \begin{cases}x^3 \equal{} 3x\minus{}12y\plus{}50, \\ y^3 \equal{} 12y\plus{}3z\minus{}2, \\ z^3 \equal{} 27z \plus{} 27x. \end{cases}\] [i]Razvan Gelca.[/i]

Estonia Open Senior - geometry, 1997.1.4

Let $H, K, L$ be the feet from the altitudes from vertices $A, B, C$ of the triangle $ABC$, respectively. Prove that $| AK | \cdot | BL | \cdot| CH | = | HK | \cdot | KL | \cdot | LH | = | AL | \cdot | BH | \cdot | CK | $.

2014 NZMOC Camp Selection Problems, 1

Prove that for all positive real numbers $a$ and $ b$: $$\frac{(a + b)^3}{4} \ge a^2b + ab^2$$

2024 Sharygin Geometry Olympiad, 16

Tags: geometry , incenter
Let $AA_1, BB_1, $ and $CC_1$ be the bisectors of a triangle $ABC$. The segments $BB_1$ and $A_1C_1$ meet at point $D$. Let $E$ be the projection of $D$ to $AC$. Points $P$ and $Q$ on sides $AB$ and $BC$ respectively are such that $EP = PD, EQ = QD$. Prove that $\angle PDB_1 = \angle EDQ$.

2024 Moldova Team Selection Test, 10

For positive integers $a, b, c$ (not necessarily distinct), suppose that $a+bc, b+ac, c+ab$ are all perfect squares. Show that $$a^2(b+c)+b^2(a+c)+c^2(a+b)+2abc$$ can be written as sum of two squares.

2018 Turkey Junior National Olympiad, 3

In an acute $ABC$ triangle which has a circumcircle center called $O$, there is a line that perpendiculars to $AO$ line cuts $[AB]$ and $[AC]$ respectively on $D$ and $E$ points. There is a point called $K$ that is different from $AO$ and $BC$'s junction point on $[BC]$. $AK$ line cuts the circumcircle of $ADE$ on $L$ that is different from $A$. $M$ is the symmetry point of $A$ according to $DE$ line. Prove that $K$,$L$,$M$,$O$ are circular.

1994 Baltic Way, 10

How many positive integers satisfy the following three conditions: a) All digits of the number are from the set $\{1,2,3,4,5\}$; b) The absolute value of the difference between any two consecutive digits is $1$; c) The integer has $1994$ digits?

2021 Romania National Olympiad, 1

Find the complex numbers $x,y,z$,with $\mid x\mid=\mid y\mid=\mid z\mid$,knowing that $x+y+z$ and $x^{3}+y^{3}+z^{3}$ are be real numbers.