This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

ICMC 4, 1

Let \(S\) be a set with 10 distinct elements. A set \(T\) of subsets of \(S\) (possibly containing the empty set) is called [i]union-closed[/i] if, for all \(A, B \in T\), it is true that \(A \cup B \in T\). Show that the number of union-closed sets \(T\) is less than \(2^{1023}\). [i]Proposed by Tony Wang[/i]

2002 India IMO Training Camp, 16

Is it possible to find $100$ positive integers not exceeding $25,000$, such that all pairwise sums of them are different?

2008 ITest, 58

Tags: logarithm
Finished with rereading Isaac Asimov's $\textit{Foundation}$ series, Joshua asks his father, "Do you think somebody will build small devices that run on nuclear energy while I'm alive?" "Honestly, Josh, I don't know. There are a lot of very different engineering problems involved in designing such devices. But technology moves forward at an amazing pace, so I won't tell you we can't get there in time for you to see it. I $\textit{did}$ go to a graduate school with a lady who now works on $\textit{portable}$ nuclear reactors. They're not small exactly, but they aren't nearly as large as most reactors. That might be the first step toward a nuclear-powered pocket-sized video game. Hannah adds, "There are already companies designing batteries that are nuclear in the sense that they release energy from uranium hydride through controlled exoenergetic processes. This process is not the same as the nuclear fission going on in today's reactors, but we can certainly call it $\textit{nuclear energy}$." "Cool!" Joshua's interest is piqued. Hannah continues, "Suppose that right now in the year $2008$ we can make one of these nuclear batteries in a battery shape that is $2$ meters $\textit{across}$. Let's say you need that size to be reduced to $2$ centimeters $\textit{across}$, in the same proportions, in order to use it to run your little video game machine. If every year we reduce the necessary volume of such a battery by $1/3$, in what year will the batteries first get small enough?" Joshua asks, "The battery shapes never change? Each year the new batteries are similar in shape - in all dimensions - to the bateries from previous years?" "That's correct," confirms Joshua's mother. "Also, the base $10$ logarithm of $5$ is about $0.69897$ and the base $10$ logarithm of $3$ is around $0.47712$." This makes Joshua blink. He's not sure he knows how to use logarithms, but he does think he can compute the answer. He correctly notes that after $13$ years, the batteries will already be barely more than a sixth of their original width. Assuming Hannah's prediction of volume reduction is correct and effects are compounded continuously, compute the first year that the nuclear batteries get small enough for pocket video game machines. Assume also that the year $2008$ is $7/10$ complete.

1986 AMC 8, 1

Tags:
In July 1861, $ 366$ inches of rain fell in Cherrapunji, India. What was the average rainfall in inches per hour during that month? \[ \textbf{(A)}\ \frac{366}{31 \times 24} \qquad \textbf{(B)}\ \frac{366 \times 31}{24} \qquad \textbf{(C)}\ \frac{366 \times 24}{31} \\ \textbf{(D)}\ \frac{31 \times 24}{366} \qquad \textbf{(E)}\ 366 \times 31 \times 24 \]

2020 MMATHS, 5

Tags: algebra , minimum
Let $x, y$ be positive reals such that $x \ne y$. Find the minimum possible value of $(x + y)^2 + \frac{54}{xy(x-y)^2}$ .

2015 Kazakhstan National Olympiad, 2

Solve in positive integers $x^yy^x=(x+y)^z$

2017 Olympic Revenge, 3

Let $n$ a positive integer. We call a pair $(\pi ,C)$ composed by a permutation $\pi$$:$ {$1,2,...n$}$\rightarrow${$1,2,...,n$} and a binary function $C:$ {$1,2,...,n$}$\rightarrow${$0,1$} "revengeful" if it satisfies the two following conditions: $1)$For every $i$ $\in$ {$1,2,...,n$}, there exist $j$ $\in$ $S_{i}=${$i, \pi(i),\pi(\pi(i)),...$} such that $C(j)=1$. $2)$ If $C(k)=1$, then $k$ is one of the $v_{2}(|S_{k}|)+1$ highest elements of $S_{k}$, where $v_{2}(t)$ is the highest nonnegative integer such that $2^{v_{2}(t)}$ divides $t$, for every positive integer $t$. Let $V$ the number of revengeful pairs and $P$ the number of partitions of $n$ with all parts powers of $2$. Determine $\frac{V}{P}$.

2010 Iran MO (3rd Round), 2

in a quadrilateral $ABCD$, $E$ and $F$ are on $BC$ and $AD$ respectively such that the area of triangles $AED$ and $BCF$ is $\frac{4}{7}$ of the area of $ABCD$. $R$ is the intersection point of digonals of $ABCD$. $\frac{AR}{RC}=\frac{3}{5}$ and $\frac{BR}{RD}=\frac{5}{6}$. a) in what ratio does $EF$ cut the digonals?(13 points) b) find $\frac{AF}{FD}$.(5 points)

1959 Czech and Slovak Olympiad III A, 2

Let $a, b, c$ be real numbers such that $a+b+c > 0$, $ab+bc+ca > 0$, $abc > 0$. Show that $a, b, c$ are all positive.

2014 Peru IMO TST, 11

Tags: geometry
Let $ABC$ be a triangle, and $P$ be a variable point inside $ABC$ such that $AP$ and $CP$ intersect sides $BC$ and $AB$ at $D$ and $E$ respectively, and the area of the triangle $APC$ is equal to the area of quadrilateral $BDPE$. Prove that the circumscribed circumference of triangle $BDE$ passes through a fixed point different from $B$.

2019 Mathematical Talent Reward Programme, SAQ: P 3

Suppose $a$, $b$, $c$ are three positive real numbers with $a + b + c = 3$. Prove that $$\frac{a}{b^2 + c}+\frac{b}{c^2 + a}+\frac{c}{a^2 + b}\geq \frac{3}{2}$$

2015 Geolympiad Summer, 5.

Tags:
Let $ABC$ be a triangle and $P$ be in its interior. Let $Q$ be the isogonal conjugate of $P$. Show that $BCPQ$ is cyclic if and only if $AP=AQ$.

2022 Benelux, 1

Let $n\geqslant 0$ be an integer, and let $a_0,a_1,\dots,a_n$ be real numbers. Show that there exists $k\in\{0,1,\dots,n\}$ such that $$a_0+a_1x+a_2x^2+\cdots+a_nx^n\leqslant a_0+a_1+\cdots+a_k$$ for all real numbers $x\in[0,1]$.

2015 Taiwan TST Round 3, 1

A plane has several seats on it, each with its own price, as shown below(attachment). $2n-2$ passengers wish to take this plane, but none of them wants to sit with any other passenger in the same column or row. The captain realize that, no matter how he arranges the passengers, the total money he can collect is the same. Proof this fact, and compute how much money the captain can collect.

2007 IberoAmerican, 5

Let's say a positive integer $ n$ is [i]atresvido[/i] if the set of its divisors (including 1 and $ n$) can be split in in 3 subsets such that the sum of the elements of each is the same. Determine the least number of divisors an atresvido number can have.

2018 PUMaC Combinatorics B, 1

You have four fair $6$-sided dice, each numbered $1$ to $6$ (inclusive). If all four dice are rolled, the probability that the product of the rolled numbers is prime can be written as $\tfrac{a}{b}$, where $a$ and $b$ are relatively prime. What is $a+b$?

2003 Czech-Polish-Slovak Match, 5

Consider the binomial coefficients $\binom{n}{k}=\frac{n!}{k!(n-k)!}\ (k=1,2,\ldots n-1)$. Determine all positive integers $n$ for which $\binom{n}{1},\binom{n}{2},\ldots ,\binom{n}{n-1}$ are all even numbers.

2023 JBMO Shortlist, A5

Let $a \geq b \geq 1 \geq c \geq 0$ be real numbers such that $a+b+c=3$. Show that $$3 \left( \frac{a}{b}+\frac{b}{a} \right ) \geq 4c^2+\frac{a^2}{b}+\frac{b^2}{a}$$

2021 ISI Entrance Examination, 4

Tags: function , calculus
Let $g:(0,\infty) \rightarrow (0,\infty)$ be a differentiable function whose derivative is continuous, and such that $g(g(x)) = x$ for all $x> 0$. If $g$ is not the identity function, prove that $g$ must be strictly decreasing.

2016 PUMaC Geometry B, 7

Tags: geometry
In isosceles triangle $ABC$ with base $BC$, let $M$ be the midpoint of $BC$. Let $P$ be the intersection of the circumcircle of $\vartriangle ACM$ with the circle with center $B$ passing through $M$, such that $P \ne M$. If $\angle BPC = 135^o$, then $\frac{CP}{AP}$ can be written as $a +\sqrt{b}$ for positive integers $a$ and $b$, where $b$ is not divisible by the square of any prime. Find $a + b$.

1995 Kurschak Competition, 1

Given in the plane is a lattice and a grid rectangle with sides parallel to the coordinate axes. We divide the rectangle into grid triangles with area $\frac12$. Prove that the number of right angled triangles is at least twice as much as the shorter side of the rectangle. (A grid polygon is a polygon such that both coordinates of each vertex is an integer.)

2014 CHMMC (Fall), 2

A matrix $\begin{bmatrix} x & y \\ z & w \end{bmatrix}$ has square root $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ if $$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^2 = \begin{bmatrix} a^2 + bc &ab + bd \\ ac + cd & bc + d^2 \end{bmatrix} = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$ Determine how many square roots the matrix $\begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$ has (complex coefficients are allowed).

2010 Flanders Math Olympiad, 4

In snack bar Pita Goras, the owner checks his accounts. He writes on every line either a positive amount in case of an income or a negative amount in case of an expense. He says to his accountant, “If I change the amounts of random $5$ adding consecutive lines, I always get a strictly positive result.” "Indeed," the accountant answers him, “but if you put the sums of $7$ consecutive lines add up, you always get a strictly negative result.” How many lines are there maximum on his sheet?

2020 Taiwan TST Round 3, 5

Let $O$ and $H$ be the circumcenter and the orthocenter, respectively, of an acute triangle $ABC$. Points $D$ and $E$ are chosen from sides $AB$ and $AC$, respectively, such that $A$, $D$, $O$, $E$ are concyclic. Let $P$ be a point on the circumcircle of triangle $ABC$. The line passing $P$ and parallel to $OD$ intersects $AB$ at point $X$, while the line passing $P$ and parallel to $OE$ intersects $AC$ at $Y$. Suppose that the perpendicular bisector of $\overline{HP}$ does not coincide with $XY$, but intersect $XY$ at $Q$, and that points $A$, $Q$ lies on the different sides of $DE$. Prove that $\angle EQD = \angle BAC$. [i]Proposed by Shuang-Yen Lee[/i]

2018 Belarusian National Olympiad, 9.3

The bisector of angle $CAB$ of triangle $ABC$ intersects the side $CB$ at $L$. The point $D$ is the foot of the perpendicular from $C$ to $AL$ and the point $E$ is the foot of perpendicular from $L$ to $AB$. The lines $CB$ and $DE$ meet at $F$. Prove that $AF$ is an altitude of triangle $ABC$.