This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2006 Federal Competition For Advanced Students, Part 2, 1

Let $ N$ be a positive integer. How many non-negative integers $ n \le N$ are there that have an integer multiple, that only uses the digits $ 2$ and $ 6$ in decimal representation?

2017 Saint Petersburg Mathematical Olympiad, 3

Let $ABC$ be an acute triangle, with median $AM$, height $AH$ and internal angle bisector $AL$. Suppose that $B, H, L, M, C$ are collinear in that order, and $LH<LM$. Prove that $BC>2AL$.

2021 Tuymaada Olympiad, 4

Some manors of Lipshire county are connected by roads. The inhabitants of manors connected by a road are called neighbours. Is it always possible to settle in each manor a knight (who always tells truth) or a liar (who always lies) so that every inhabitant can say ”The number of liars among my neighbours is at least twice the number of knights”?

2021 Princeton University Math Competition, A4 / B6

There are n lilypads in a row labeled $1, 2, \dots, n$ from left to right. Fareniss the Frog picks a lilypad at random to start on, and every second she jumps to an adjacent lilypad; if there are two such lilypads, she is twice as likely to jump to the right as to the left. After some finite number of seconds, there exists two lilypads $A$ and $B$ such that Fareniss is more than $1000$ times as likely to be on $A$ as she is to be on $B$. What is the minimal number of lilypads $n$ such that this situation must occur?

2016 May Olympiad, 4

Given a board of $3 \times 3$ you want to write the numbers $1, 2, 3, 4, 5, 6, 7, 8$ and a number in their boxes positive integer $M$, not necessarily different from the above. The goal is that the sum of the three numbers in each row be the same $a)$ Find all the values of $M$ for which this is possible. $b)$ For which of the values of $M$ found in $a)$ is it possible to arrange the numbers so that no only the three rows add the same but also the three columns add the same?

2023 Rioplatense Mathematical Olympiad, 5

Tags: function , algebra
Let $\mathbb{R}^{+}$ be the set of positive real numbers. Determine all non-negative real number $\alpha$ such that there exist a function $f:\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that $$f(x^{\alpha}+y)=(f(x+y))^{\alpha}+f(y)$$ for any $x,y$ positive real numbers.

2006 Singapore Senior Math Olympiad, 2

Let $ABCD$ be a cyclic quadrilateral, let the angle bisectors at $A$ and $B$ meet at $E$, and let the line through $E$ parallel to side $CD$ intersect $AD$ at $L$ and $BC$ at $M$. Prove that $LA + MB = LM$.

1998 Turkey MO (2nd round), 3

Some of the vertices of unit squares of an $n\times n$ chessboard are colored so that any $k\times k$ ( $1\le k\le n$) square consisting of these unit squares has a colored point on at least one of its sides. Let $l(n)$ denote the minimum number of colored points required to satisfy this condition. Prove that $\underset{n\to \infty }{\mathop \lim }\,\frac{l(n)}{{{n}^{2}}}=\frac{2}{7}$.

1954 Putnam, B1

Show that the equation $x^2 -y^2 =a^3$ has always integral solutions for $x$ and $y$ whenever $a$ is a positive integer.

2003 Romania National Olympiad, 3

Let be two functions $ f,g:\mathbb{R}_{\ge 0 }\longrightarrow\mathbb{R} $ having that properties that $ f $ is continuous, $ g $ is nondecreasing and unbounded, and for any sequence of rational numbers $ \left( x_n \right)_{n\ge 1} $ that diverges to $ \infty , $ we have $$ 1=\lim_{n\to\infty } f\left( x_n \right) g\left( x_n \right) . $$ Prove that $1=\lim_{x\to\infty } f\left( x \right) g\left( x \right) . $ [i]Radu Gologan[/i]

1995 AMC 12/AHSME, 6

The figure shown can be folded into the shape of a cube. In the resulting cube, which of the lettered faces is opposite the face marked $x$? [asy] defaultpen(linewidth(0.7)); path p=origin--(0,1)--(1,1)--(1,2)--(2,2)--(2,3); draw(p^^(2,3)--(4,3)^^shift(2,0)*p^^(2,0)--origin); draw(shift(1,0)*p, dashed); label("$x$", (0.3,0.5), E); label("$A$", (1.3,0.5), E); label("$B$", (1.3,1.5), E); label("$C$", (2.3,1.5), E); label("$D$", (2.3,2.5), E); label("$E$", (3.3,2.5), E);[/asy] $ \mathbf{(A)}\; A\qquad \mathbf{(B)}\; B\qquad \mathbf{(C)}\; C\qquad \mathbf{(D)}\; D\qquad \mathbf{(E)}\; E$

2017 District Olympiad, 3

Tags: algebra , minimum
[b]a)[/b] Show that the expression $ x^3-5x^2+8x-4 $ is nonegative, for every $ x\in [1,\infty ) . $ [b]b)[/b] Determine $ \min_{a,b\in [1,\infty )} \left( ab(a+b-10) +8(a+b) \right) . $

2024 Kyiv City MO Round 2, Problem 4

In a certain magical country, there are banknotes in denominations of $2^0, 2^1, 2^2, \ldots$ UAH. Businessman Victor has to make cash payments to $44$ different companies totaling $44000$ UAH, but he does not remember how much he has to pay to each company. What is the smallest number of banknotes Victor should withdraw from an ATM (totaling exactly $44000$ UAH) to guarantee that he would be able to pay all the companies without leaving any change? [i]Proposed by Oleksii Masalitin[/i]

1985 AIME Problems, 7

Tags:
Assume that $a$, $b$, $c$, and $d$ are positive integers such that $a^5 = b^4$, $c^3 = d^2$, and $c - a = 19$. Determine $d - b$.

1980 AMC 12/AHSME, 9

Tags: trigonometry
A man walks $x$ miles due west, turns $150^\circ$ to his left and walks 3 miles in the new direction. If he finishes a a point $\sqrt{3}$ from his starting point, then $x$ is $\text{(A)} \ \sqrt 3 \qquad \text{(B)} \ 2\sqrt{5} \qquad \text{(C)} \ \frac 32 \qquad \text{(D)} \ 3 \qquad \text{(E)} \ \text{not uniquely determined}$

2021 Science ON all problems, 1

Are there any integers $a,b$ and $c$, not all of them $0$, such that $$a^2=2021b^2+2022c^2~~?$$ [i] (Cosmin Gavrilă)[/i]

MMPC Part II 1958 - 95, 1963

[b]p1.[/b] Suppose $x \ne 1$ or $10$ and logarithms are computed to the base $10$. Define $y= 10^{\frac{1}{1-\log x}}$ and $z = ^{\frac{1}{1-\log y}}$ . Prove that $x= 10^{\frac{1}{1-\log z}}$ [b]p2.[/b] If $n$ is an odd number and $x_1, x_2, x_3,..., x_n$ is an arbitrary arrangement of the integers $1, 2,3,..., n$, prove that the product $$(x_1 -1)(x_2-2)(x_3- 3)... (x_n-n)$$ is an even number (possibly negative or zero). [b]p3.[/b] Prove that $\frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot(2n} < \sqrt{\frac{1}{2n + 1}}$ for all integers $n = 1,2,3,...$ [b]p4.[/b] Prove that if three angles of a convex polygon are each $60^o$, then the polygon must be an equilateral triangle. [b]p5.[/b] Find all solutions, real and complex, of $$4 \left(x^2+\frac{1}{x^2} \right)-4 \left( x+\frac{1}{x} \right)-7=0$$ [b]p6.[/b] A man is $\frac38$ of the way across a narrow railroad bridge when he hears a train approaching at $60$ miles per hour. No matter which way he runs he can [u]just [/u] escape being hit by the train. How fast can he run? Prove your assertion. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

KoMaL A Problems 2024/2025, A. 889

Let $W,A,B$ be fixed real numbers with $W>0$. Prove that the following statements are equivalent. [list] [*] For all $x, y, z\ge 0$ satisfying $x+y\le z+W, x+z\le y+W, y+z\le x+W$ we have $Axyz+B\ge x^2+y^2+z^2$. [*] $B\ge W^2$ and $AW^3+B\ge 3W^2$. [/list] [i]Proposed by Ákos Somogyi, London[/i]

2007 IMC, 6

How many nonzero coefficients can a polynomial $ P(x)$ have if its coefficients are integers and $ |P(z)| \le 2$ for any complex number $ z$ of unit length?

2008 AMC 10, 22

Tags: probability
Jacob uses the following procedure to write down a sequence of numbers. First he chooses the first term to be $ 6$. To generate each succeeding term, he flips a fair coin. If it comes up heads, he doubles the previous term and subtracts $ 1$. If it comes up tails, he takes half of the previous term and subtracts $ 1$. What is the probability that the fourth term in Jacob's sequence is an integer? $ \textbf{(A)}\ \frac{1}{6} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{1}{2} \qquad \textbf{(D)}\ \frac{5}{8} \qquad \textbf{(E)}\ \frac{3}{4}$

2018 Harvard-MIT Mathematics Tournament, 8

Tags:
For how many pairs of sequences of nonnegative integers $(b_1,b_2,\ldots, b_{2018})$ and $(c_1,c_2,\ldots, c_{2018})$ does there exist a sequence of nonnegative integers $(a_0,\ldots, a_{2018})$ with the following properties: [list] [*] For $0\leq i\leq 2018,$ $a_i<2^{2018}.$ [*] For $1\leq i \leq 2018, b_i=a_{i-1}+a_i$ and $c_i=a_{i-1}|a_i$; [/list] where $|$ denotes the bitwise or operation?

2013 Balkan MO Shortlist, N8

Suppose that $a$ and $b$ are integers. Prove that there are integers $c$ and $d$ such that $a+b+c+d=0$ and $ac+bd=0$, if and only if $a-b$ divides $2ab$.

1990 Austrian-Polish Competition, 7

$D_n$ is a set of domino pieces. For each pair of non-negative integers $(a, b)$ with $a \le b \le n$, there is one domino, denoted $[a, b]$ or $[b, a]$ in $D_n$. A [i]ring [/i] is a sequence of dominoes $[a_1, b_1], [a_2, b_2], ... , [a_k, b_k]$ such that $b_1 = a_2, b_2 = a_3, ... , b_{k-1} = a_k$ and $b_k = a_1$. Show that if $n$ is even there is a ring which uses all the pieces. Show that for n odd, at least $(n+1)/2$ pieces are not used in any ring. For $n$ odd, how many different sets of $(n+1)/2$ are there, such that the pieces not in the set can form a ring?

2022 AMC 12/AHSME, 17

Tags: trigonometry
Suppose $a$ is a real number such that the equation $$a\cdot(\sin x+\sin(2x))=\sin(3x)$$ has more than one solution in the interval $(0,\pi)$. The set of all such $a$ can be written in the form $(p,q)\cup(q,r)$, where $p$, $q$, and $r$ are real numbers with $p<q<r$. What is $p+q+r$? $\textbf{(A) }-4\qquad\textbf{(B) }-1\qquad\textbf{(C) }0\qquad\textbf{(D) }1\qquad\textbf{(E) }4$

2014 Hanoi Open Mathematics Competitions, 1

Let the numbers x and y satisfy the conditions $\begin{cases} x^2 + y^2 - xy = 2 \\ x^4 + y^4 + x^2y^2 = 8 \end{cases}$ The value of $P = x^8 + y^8 + x^{2014}y^{2014}$ is: (A): $46$, (B): $48$, (C): $50$, (D): $52$, (E) None of the above.