Found problems: 339
1974 Spain Mathematical Olympiad, 5
Let $(G, \cdot )$ be a group and $e$ an identity element. Prove that if all elements $x$ of $G$ satisfy $x\cdot x = e$ then $(G, \cdot)$ is abelian (that is, commutative).
2023 Bulgaria National Olympiad, 3
Let $f(x)$ be a polynomial with positive integer coefficients. For every $n\in\mathbb{N}$, let $a_{1}^{(n)}, a_{2}^{(n)}, \dots , a_{n}^{(n)}$ be fixed positive integers that give pairwise different residues modulo $n$ and let
\[g(n) = \sum\limits_{i=1}^{n} f(a_{i}^{(n)}) = f(a_{1}^{(n)}) + f(a_{2}^{(n)}) + \dots + f(a_{n}^{(n)})\]
Prove that there exists a constant $M$ such that for all integers $m>M$ we have $\gcd(m, g(m))>2023^{2023}$.
1987 Traian Lălescu, 2.1
Any polynom, with coefficients in a given division ring, that is irreducible over it, is also irreducible over a given extension skew ring of it that's finite. Prove that the ring and its extension coincide.
1990 IMO Longlists, 50
During the class interval, $n$ children sit in a circle and play the game described below. The teacher goes around the children clockwisely and hands out candies to them according to the following regulations: Select a child, give him a candy; and give the child next to the first child a candy too; then skip over one child and give next child a candy; then skip over two children; give the next child a candy; then skip over three children; give the next child a candy;...
Find the value of $n$ for which the teacher can ensure that every child get at least one candy eventually (maybe after many circles).
2006 Mathematics for Its Sake, 3
Let be a group with $ 10 $ elements for which there exist two non-identity elements, $ a,b, $ having the property that $ a^2 $ and $ b^2 $ are the identity. Show that this group is not commutative.
1986 Traian Lălescu, 1.1
Let be two nontrivial rings linked by an application ($ K\stackrel{\vartheta }{\mapsto } L $) having the following properties:
$ \text{(i)}\quad x,y\in K\implies \vartheta (x+y) = \vartheta (x) +\vartheta (y) $
$ \text{(ii)}\quad \vartheta (1)=1 $
$ \text{(iii)}\quad \vartheta \left( x^3\right) =\vartheta^3 (x) $
[b]a)[/b] Show that if $ \text{char} (L)\ge 4, $ and $ K,L $ are fields, then $ \vartheta $ is an homomorphism.
[b]b)[/b] Prove that if $ K $ is a noncommutative division ring, then it’s possible that $ \vartheta $ is not an homomorphism.
1993 Hungary-Israel Binational, 4
In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group.
Let $H \leq G$ and $a, b \in G.$ Prove that $|aH \cap Hb|$ is either zero or a divisor of $|H |.$
2008 USAMO, 6
At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form $ 2^k$ for some positive integer $ k$).
1984 Putnam, B3
Prove or disprove the following statement: If $F$ is a finite set with two or more elements, then there exists a binary operation $*$ on $F$ such that for all $x,y,z$ in $F$,
$(\text i)$ $x*z=y*z$ implies $x=y$
$(\text{ii})$ $x*(y*z)\ne(x*y)*z$
2013 District Olympiad, 3
Let $A$ be an non-invertible of order $n$, $n>1$, with the elements in the set of complex numbers, with all the elements having the module equal with 1
a)Prove that, for $n=3$, two rows or two columns of the $A$ matrix are proportional
b)Does the conclusion from the previous exercise remains true for $n=4$?
2016 IMC, 3
Let $n$ be a positive integer, and denote by $\mathbb{Z}_n$ the ring of integers modulo $n$. Suppose that there exists a function $f:\mathbb{Z}_n\to\mathbb{Z}_n$ satisfying the following three properties:
(i) $f(x)\neq x$,
(ii) $f(f(x))=x$,
(iii) $f(f(f(x+1)+1)+1)=x$ for all $x\in\mathbb{Z}_n$.
Prove that $n\equiv 2 \pmod4$.
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Germany)
2003 Alexandru Myller, 3
Let be three elements $ a,b,c $ of a nontrivial, noncommutative ring, that satisfy $ ab=1-c, $ and such that there exists an element $ d $ from the ring such that $ a+cd $ is a unit. Prove that there exists an element $ e $ from the ring such that $ b+ec $ is a unit.
[i]Andrei Nedelcu[/i] and [i] Lucian Ladunca [/i]
2014 Contests, 1
Determine the last two digits of the product of the squares of all positive odd integers less than $2014$.
2005 District Olympiad, 4
Let $(A,+,\cdot)$ be a finite unit ring, with $n\geq 3$ elements in which there exist [b]exactly[/b] $\dfrac {n+1}2$ perfect squares (e.g. a number $b\in A$ is called a perfect square if and only if there exists an $a\in A$ such that $b=a^2$). Prove that
a) $1+1$ is invertible;
b) $(A,+,\cdot)$ is a field.
[i]Proposed by Marian Andronache[/i]
2017 Baltic Way, 18
Let $p>3$ be a prime and let $a_1,a_2,...,a_{\frac{p-1}{2}}$ be a permutation of $1,2,...,\frac{p-1}{2}$. For which $p$ is it always possible to determine the sequence $a_1,a_2,...,a_{\frac{p-1}{2}}$ if it for all $i,j\in\{1,2,...,\frac{p-1}{2}\}$ with $i\not=j$ the residue of $a_ia_j$ modulo $p$ is known?
1993 Hungary-Israel Binational, 6
In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group.
Let $a, b \in G.$ Suppose that $ab^{2}= b^{3}a$ and $ba^{2}= a^{3}b.$ Prove that $a = b = 1.$
2019 Bulgaria EGMO TST, 1
Let $x_1,\ldots,x_n$ be a sequence with each term equal to $0$ or $1$. Form a triangle as follows: its first row is $x_1,\ldots,x_n$ and if a row if $a_1, a_2, \ldots, a_m$, then the next row is $a_1 + a_2, a_2 + a_3, \ldots, a_{m-1} + a_m$ where the addition is performed modulo $2$ (so $1+1=0$). For example, starting from $1$, $0$, $1$, $0$, the second row is $1$, $1$, $1$, the third one is $0$, $0$ and the fourth one is $0$.
A sequence is called good it is the same as the sequence formed by taking the last element of each row, starting from the last row (so in the above example, the sequence is $1010$ and the corresponding sequence from last terms is $0010$ and they are not equal in this case). How many possibilities are there for the sequence formed by taking the first element of each row, starting from the last row, which arise from a good sequence?
2012 IMC, 5
Let $c \ge 1$ be a real number. Let $G$ be an Abelian group and let $A \subset G$ be a finite set satisfying $|A+A| \le c|A|$, where $X+Y:= \{x+y| x \in X, y \in Y\}$ and $|Z|$ denotes the cardinality of $Z$. Prove that
\[|\underbrace{A+A+\dots+A}_k| \le c^k |A|\]
for every positive integer $k$.
[i]Proposed by Przemyslaw Mazur, Jagiellonian University.[/i]
2006 Iran MO (3rd Round), 5
For each $n$, define $L(n)$ to be the number of natural numbers $1\leq a\leq n$ such that $n\mid a^{n}-1$. If $p_{1},p_{2},\ldots,p_{k}$ are the prime divisors of $n$, define $T(n)$ as $(p_{1}-1)(p_{2}-1)\cdots(p_{k}-1)$.
a) Prove that for each $n\in\mathbb N$ we have $n\mid L(n)T(n)$.
b) Prove that if $\gcd(n,T(n))=1$ then $\varphi(n) | L(n)T(n)$.
2010 Iran MO (3rd Round), 3
suppose that $G<S_n$ is a subgroup of permutations of $\{1,...,n\}$ with this property that for every $e\neq g\in G$ there exist exactly one $k\in \{1,...,n\}$ such that $g.k=k$. prove that there exist one $k\in \{1,...,n\}$ such that for every $g\in G$ we have $g.k=k$.(20 points)
2019 District Olympiad, 1
Let $n$ be a positive integer and $G$ be a finite group of order $n.$ A function $f:G \to G$ has the $(P)$ property if $f(xyz)=f(x)f(y)f(z)~\forall~x,y,z \in G.$
$\textbf{(a)}$ If $n$ is odd, prove that every function having the $(P)$ property is an endomorphism.
$\textbf{(b)}$ If $n$ is even, is the conclusion from $\textbf{(a)}$ still true?
2014 VJIMC, Problem 2
Let $p$ be a prime number and let $A$ be a subgroup of the multiplicative group $\mathbb F^*_p$ of the finite field $\mathbb F_p$ with $p$ elements. Prove that if the order of $A$ is a multiple of $6$, then there exist $x,y,z\in A$ satisfying $x+y=z$.
2015 District Olympiad, 1
[b]a)[/b] Solve the equation $ x^2-x+2\equiv 0\pmod 7. $
[b]b)[/b] Determine the natural numbers $ n\ge 2 $ for which the equation $ x^2-x+2\equiv 0\pmod n $ has an unique solution modulo $ n. $
2009 IMS, 7
Let $ G$ be a group such that $ G'$ is abelian and each normal and abelian subgroup of $ G$ is finite. Prove that $ G$ is finite.
1979 Miklós Schweitzer, 4
For what values of $ n$ does the group $ \textsl{SO}(n)$ of all orthogonal transformations of determinant $ 1$ of the $ n$-dimensional Euclidean space possess a closed regular subgroup?($ \textsl{G}<\textsl{SO}(n)$ is called $ \textit{regular}$ if for any elements $ x,y$ of the unit sphere there exists a unique $ \varphi \in \textsl{G}$ such that $ \varphi(x)\equal{}y$.)
[i]Z. Szabo[/i]