Found problems: 15925
2003 Silk Road, 1
Let $a_1, a_2, ....., a_{2003}$ be sequence of reals number.
Call $a_k$ $leading$ element, if at least one of expression $a_k; a_k+a_{k+1}; a_k+a_{k+1}+a_{k+2}; ....; a_k+a{k+1}+a_{k+2}+....+a_{2003}$ is positive.
Prove, that if exist at least one $leading$ element, then sum of all $leading$'s elements is positive.
Official solution [url=http://www.artofproblemsolving.com/Forum/viewtopic.php?f=125&t=365714&p=2011659#p2011659]here[/url]
1967 Poland - Second Round, 1
Real numbers $a_1,a_2,...,a_n$ ($n \ge 3$) satisfy the conditions $a_1 = a_n = 0$ and $$a_{k-1}+a_{k+1} \ge 2a_k$$ for $k = 2$,$3$$,...,$$n -1$. Prove that none of the numbers $a_1$,$...$,$a_n$ is positive.
2014 Iran MO (3rd Round), 2
Find all continuous function $f:\mathbb{R}^{\geq 0}\rightarrow \mathbb{R}^{\geq 0}$ such that :
\[f(xf(y))+f(f(y)) = f(x)f(y)+2 \: \: \forall x,y\in \mathbb{R}^{\geq 0}\]
[i]Proposed by Mohammad Ahmadi[/i]
MMPC Part II 1958 - 95, 1986
[b]p1.[/b] $\vartriangle DEF$ is constructed from equilateral $\vartriangle ABC$ by choosing $D$ on $AB$, $E$ on $BC$ and $F$ on $CA$ so that $\frac{DB}{AB}=\frac{EC}{BC}=\frac{FA}{CA}=a$, where $a$ is a number between $0$ and $1/2$.
(a) Show that $\vartriangle DEF$ is also equilateral.
(b) Determine the value of $a$ that makes the area of $\vartriangle DEF$ equal to one half the area of $\vartriangle ABC$.
[b]p2.[/b] A bowl contains some red balls and some white balls. The following operation is repeated until only one ball remains in the bowl:
Two balls are drawn at random from the bowl. If they have different colors, then the red one is discarded and the white one is returned to the bowl. If they have the same color, then both are discarded and a red ball (from an outside supply of red balls) is added to the bowl.
(Note that this operation—in either case—reduces the number of balls in the bowl by one.)
(a) Show that if the bowl originally contained exactly $1$ red ball and $ 2$ white balls, then the color of the ball remaining at the end (i.e., after two applications of the operation) does not depend on chance, and determine the color of this remaining ball.
(b) Suppose the bowl originally contained exactly $1986$ red balls and $1986$ white balls. Show again that the color of the ball remaining at the end does not depend on chance and determine its color.
[b]p3.[/b] Let $a, b$, and $c$ be three consecutive positive integers, with $a < b < c.$
(a) Show that $ab$ cannot be the square of an integer.
(b) Show that $ac$ cannot be the square of an integer.
(c) Show that $abc$ cannot be the square of an integer.
[b]p4.[/b] Consider the system of equations $$\sqrt{x}+\sqrt{y}=2$$
$$ x^2+y^2=5$$
(a) Show (algebraically or graphically) that there are two or more solutions in real numbers $x$ and $y$.
(b) The graphs of the two given equations intersect in exactly two points. Find the equation of the straight line passing through these two points of intersection.
[b]p5.[/b] Let $n$ and $m$ be positive integers. An $n \times m $ rectangle is tiled with unit squares. Let $r(n, m)$ denote the number of rectangles formed by the edges of these unit squares. Thus, for example, $r(2, 1) = 3$.
(a) Find $r(2, 3)$.
(b) Find $r(n, 1)$.
(c) Find, with justification, a formula for $r(n, m)$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1997 Italy TST, 1
Let $x,y,z,t$ be real numbers with $x,y,z$ not all equal such that \[x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}=t.\] Find all possible values of $ t$ such that $xyz+t=0$.
1978 Poland - Second Round, 3
Given a sequence of natural numbers $ (a_i) $, for each natural number $ n $ the sum of the terms of the sequence that are not greater than $ n $ is a number not less than $ n $. Prove that for every natural number $ k $ it is possible to choose from the sequence $ (a_i) $ a finite sequence with the sum of terms equal to $ k $.
2009 Singapore Junior Math Olympiad, 5
Let $a, b$ be positive real numbers satisfying $a + b = 1$. Show that if $x_1,x_2,...,x_5$ are positive real numbers such that $x_1x_2...x_5 = 1$, then $(ax_1+b)(ax_2+b)...(ax_5+b)>1$
2019 Peru IMO TST, 6
Let $p$ and $q$ two positive integers. Determine the greatest value of $n$ for which there exists sets $A_1,\ A_2,\ldots,\ A_n$ and $B_1,\ B_2,\ldots,\ B_n$ such that:
[LIST]
[*] The sets $A_1,\ A_2,\ldots,\ A_n$ have $p$ elements each one. [/*]
[*] The sets $B_1,\ B_2,\ldots,\ B_n$ have $q$ elements each one. [/*]
[*] For all $1\leq i,\ j \leq n$, sets $A_i$ and $B_j$ are disjoint if and only if $i=j$.
[/LIST]
2002 China Team Selection Test, 3
The positive integers $ \alpha, \beta, \gamma$ are the roots of a polynomial $ f(x)$ with degree $ 4$ and the coefficient of the first term is $ 1$. If there exists an integer such that $ f(\minus{}1)\equal{}f^2(s)$.
Prove that $ \alpha\beta$ is not a perfect square.
2006 Flanders Math Olympiad, 4
Find all functions $f: \mathbb{R}\backslash\{0,1\} \rightarrow \mathbb{R}$ such that
\[ f(x)+f\left(\frac{1}{1-x}\right) = 1+\frac{1}{x(1-x)}. \]
2005 Italy TST, 1
Suppose that $f:\{1, 2,\ldots ,1600\}\rightarrow\{1, 2,\ldots ,1600\}$ satisfies $f(1)=1$ and
\[f^{2005}(x)=x\quad\text{for}\ x=1,2,\ldots ,1600. \]
$(a)$ Prove that $f$ has a fixed point different from $1$.
$(b)$ Find all $n>1600$ such that any $f:\{1,\ldots ,n\}\rightarrow\{1,\ldots ,n\}$ satisfying the above condition has at least two fixed points.
2014 Putnam, 4
Show that for each positive integer $n,$ all the roots of the polynomial \[\sum_{k=0}^n 2^{k(n-k)}x^k\] are real numbers.
2017 Austria Beginners' Competition, 4
How many solutions does the equation:
$$[\frac{x}{20}]=[\frac{x}{17}]$$
have over the set of positve integers?
$[a]$ denotes the largest integer that is less than or equal to $a$.
[i]Proposed by Karl Czakler[/i]
2014 Contests, 3
Find all polynomials $P(x)$ with real coefficients that satisfy \[P(x\sqrt{2})=P(x+\sqrt{1-x^2})\]for all real $x$ with $|x|\le 1$.
2010 Puerto Rico Team Selection Test, 6
Find all values of $ r$ such that the inequality $$r (ab + bc + ca) + (3- r) \left( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right) \ge 9$$
is true for $a,b,c$ arbitrary positive reals
2007 Princeton University Math Competition, 2
How many positive integers $n$ are there such that $n+2$ divides $(n+18)^2$?
1967 IMO Longlists, 35
Prove the identity \[\sum\limits_{k=0}^n\binom{n}{k}\left(\tan\frac{x}{2}\right)^{2k}\left(1+\frac{2^k}{\left(1-\tan^2\frac{x}{2}\right)^k}\right)=\sec^{2n}\frac{x}{2}+\sec^n x\] for any natural number $n$ and any angle $x.$
2014 Dutch IMO TST, 3
Let $a$, $b$ and $c$ be rational numbers for which $a+bc$, $b+ac$ and $a+b$ are all non-zero and for which we have
\[\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}.\]
Prove that $\sqrt{(c-3)(c+1)}$ is rational.
2016 German National Olympiad, 1
Find all real pairs $(a,b)$ that solve the system of equation \begin{align*} a^2+b^2 &= 25, \\ 3(a+b)-ab &= 15. \end{align*} [i](German MO 2016 - Problem 1)[/i]
2010 Contests, 4
Find all polynomials $P(x)$ with real coefficients such that
\[(x-2010)P(x+67)=xP(x) \]
for every integer $x$.
2015 Caucasus Mathematical Olympiad, 2
Vasya chose a certain number $x$ and calculated the following:
$a_1=1+x^2+x^3, a_2=1+x^3+x^4, a_3=1+x^4+x^5, ..., a_n=1+x^{n+1}+x^{n+2} ,...$
It turned out that $a_2^2 = a_1a_3$.
Prove that for all $n\ge 3$, the equality $a_n^2 = a_{n-1}a_{n+1}$ holds.
MOAA Gunga Bowls, 2022
[u]Set 4[/u]
[b]G10.[/b] Let $ABCD$ be a square with side length $1$. It is folded along a line $\ell$ that divides the square into two pieces with equal area. The minimum possible area of the resulting shape is $A$. Find the integer closest to $100A$.
[b]G11.[/b] The $10$-digit number $\underline{1A2B3C5D6E}$ is a multiple of $99$. Find $A + B + C + D + E$.
[b]G12.[/b] Let $A, B, C, D$ be four points satisfying $AB = 10$ and $AC = BC = AD = BD = CD = 6$. If $V$ is the volume of tetrahedron $ABCD$, then find $V^2$.
[u]Set 5[/u]
[b]G13.[/b] Nate the giant is running a $5000$ meter long race. His first step is $4$ meters, his next step is $6$ meters, and in general, each step is $2$ meters longer than the previous one. Given that his $n$th step will get him across the finish line, find $n$.
[b]G14.[/b] In square $ABCD$ with side length $2$, there exists a point $E$ such that $DA = DE$. Let line $BE$ intersect side $AD$ at $F$ such that $BE = EF$. The area of $ABE$ can be expressed in the form $a -\sqrt{b}$ where $a$ is a positive integer and $b$ is a square-free integer. Find $a + b$.
[b]G15.[/b] Patrick the Beetle is located at $1$ on the number line. He then makes an infinite sequence of moves where each move is either moving $1$, $2$, or $3$ units to the right. The probability that he does reach $6$ at some point in his sequence of moves is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[u]Set 6[/u]
[b]G16.[/b] Find the smallest positive integer $c$ greater than $1$ for which there do not exist integers $0 \le x, y \le9$ that satisfy $2x + 3y = c$.
[b]G17.[/b] Jaeyong is on the point $(0, 0)$ on the coordinate plane. If Jaeyong is on point $(x, y)$, he can either walk to $(x + 2, y)$, $(x + 1, y + 1)$, or $(x, y + 2)$. Call a walk to $(x + 1, y + 1)$ an Brilliant walk. If Jaeyong cannot have two Brilliant walks in a row, how many ways can he walk to the point $(10, 10)$?
[b]G18.[/b] Deja vu?
Let $ABCD$ be a square with side length $1$. It is folded along a line $\ell$ that divides the square into two pieces with equal area. The maximum possible area of the resulting shape is $B$. Find the integer closest to $100B$.
PS. You should use hide for answers. Sets 1-3 have been posted [url=https://artofproblemsolving.com/community/c3h3131303p28367061]here [/url] and 7-9 [url=https://artofproblemsolving.com/community/c3h3131308p28367095]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2001 Mongolian Mathematical Olympiad, Problem 2
For positive real numbers $b_1,b_2,\ldots,b_n$ define
$$a_1=\frac{b_1}{b_1+b_2+\ldots+b_n}\enspace\text{ and }\enspace a_k=\frac{b_1+\ldots+b_k}{b_1+\ldots+b_{k-1}}\text{ for }k>1.$$Prove that $a_1+a_2+\ldots+a_n\le\frac1{a_1}+\frac1{a_2}+\ldots+\frac1{a_n}$
2000 Italy TST, 3
Given positive numbers $a_1$ and $b_1$, consider the sequences defined by
\[a_{n+1}=a_n+\frac{1}{b_n},\quad b_{n+1}=b_n+\frac{1}{a_n}\quad (n \ge 1)\]
Prove that $a_{25}+b_{25} \geq 10\sqrt{2}$.
2017 CHMMC (Fall), 10
Let $\alpha$ be the unique real root of the polynomial $x^3-2x^2+x-1$. It is known that $1<\alpha<2$. We define the sequence of polynomials $\left\{{p_n(x)}\right\}_{n\ge0}$ by taking $p_0(x)=x$ and setting
\begin{align*}
p_{n+1}(x)=(p_n(x))^2-\alpha
\end{align*}
How many distinct real roots does $p_{10}(x)$ have?