This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2022 Romania National Olympiad, P3

Tags: function , algebra
Determine all functions $f:\mathbb{R}\to\mathbb{R}$ for which there exists a function $g:\mathbb{R}\to\mathbb{R}$ such that $f(x)+f(y)=\lfloor g(x+y)\rfloor$ for all real numbers $x$ and $y$. [i]Emil Vasile[/i]

2013 AMC 10, 11

Real numbers $x$ and $y$ satisfy the equation $x^2+y^2=10x-6y-34$. What is $x+y$? $ \textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }8 $

2010 ELMO Shortlist, 7

Tags: algebra
Find the smallest real number $M$ with the following property: Given nine nonnegative real numbers with sum $1$, it is possible to arrange them in the cells of a $3 \times 3$ square so that the product of each row or column is at most $M$. [i]Evan O' Dorney.[/i]

2021 Serbia JBMO TSTs, 1

Prove that for positive real numbers $a, b, c$ the following inequality holds: \begin{align*} \frac{a}{9bc+1}+\frac{b}{9ca+1}+\frac{c}{9ab+1}\geq \frac{a+b+c}{1+(a+b+c)^2} \end{align*} When does equality occur?

2023 Austrian MO National Competition, 1

Given is a nonzero real number $\alpha$. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $$f(f(x+y))=f(x+y)+f(x)f(y)+\alpha xy$$ for all $x, y \in \mathbb{R}$.

2010 Laurențiu Panaitopol, Tulcea, 3

Let be a complex number $ z $ having the property that $ \Re \left( z^n \right) >\Im \left( z^n \right) , $ for any natural numbers $ n. $ Show that $ z $ is a positive real number. [i]Laurențiu Panaitopol[/i]

2013 Thailand Mathematical Olympiad, 8

Let $p(x) = x^{2013} + a_{2012}x^{2012} + a_{2011}x^{2011} +...+ a_1x + a_0$ be a polynomial with real coefficients with roots $- b_{1006}, - b_{1005}, ... , -b_1, 0, b_1, ... , b_{1005}, b_{1006}$, where $b_1, b_2, ... , b_{1006}$ are positive reals with product $1$. Show that $a_3a_{2011} \le 1012036$

Dumbest FE I ever created, 4.

Tags: algebra , function
Find all $f: \mathbb{R} \to \mathbb{Z^+}$ such that $$f(x+f(y))=f(x)+f(y)+1\quad\text{ or }\quad f(x)+f(y)-1$$ for all real number $x$ and $y$

II Soros Olympiad 1995 - 96 (Russia), 9.6

Tags: radical , algebra
Without using a calculator (especially a computer), find out what is more: $$\sqrt[3]{5\sqrt{13}+18}- \sqrt[3]{2\sqrt{13}+5} \,\,\, or \,\,\, 1 $$

2014 India Regional Mathematical Olympiad, 4

Find all positive reals $x,y,z $ such that \[2x-2y+\dfrac1z = \dfrac1{2014},\hspace{0.5em} 2y-2z +\dfrac1x = \dfrac1{2014},\hspace{0.5em}\text{and}\hspace{0.5em} 2z-2x+ \dfrac1y = \dfrac1{2014}.\]

2014 Albania Round 2, 1

Tags: algebra
Solve the equation, $$\sqrt{x+5}+\sqrt{16-x^2}=x^2-25$$

1996 Spain Mathematical Olympiad, 3

Consider the functions $ f(x) = ax^{2} + bx + c $ , $ g(x) = cx^{2} + bx + a $, where a, b, c are real numbers. Given that $ |f(-1)| \leq 1 $, $ |f(0)| \leq 1 $, $ |f(1)| \leq 1 $, prove that $ |f(x)| \leq \frac{5}{4} $ and $ |g(x)|  \leq 2 $ for $ -1 \leq  x \leq 1 $.

1971 IMO Shortlist, 3

Knowing that the system \[x + y + z = 3,\]\[x^3 + y^3 + z^3 = 15,\]\[x^4 + y^4 + z^4 = 35,\] has a real solution $x, y, z$ for which $x^2 + y^2 + z^2 < 10$, find the value of $x^5 + y^5 + z^5$ for that solution.

2018 Silk Road, 2

Find all functions $f:\ \mathbb{R}\rightarrow\mathbb{R}$ such that for any real number $x$ the equalities are true: $f\left(x+1\right)=1+f(x)$ and $f\left(x^4-x^2\right)=f^4(x)-f^2(x).$ [url=http://matol.kz/comments/3373/show]source[/url]

2007 Vietnam Team Selection Test, 4

Tags: function , algebra
Find all continuous functions $f: \mathbb{R}\to\mathbb{R}$ such that for all real $x$ we have \[f(x)=f\left(x^{2}+\frac{x}{3}+\frac{1}{9}\right). \]

2000 Austria Beginners' Competition, 1

Tags: algebra
Let $a$ be a real number. Determine, for all $a$, all pairs $(x,y)$ of real numbers such that $(x-y^2)(y-x^2)+x^3+y^3=a $.

2023 Indonesia MO, 8

Let $a, b, c$ be three distinct positive integers. Define $S(a, b, c)$ as the set of all rational roots of $px^2 + qx + r = 0$ for every permutation $(p, q, r)$ of $(a, b, c)$. For example, $S(1, 2, 3) = \{ -1, -2, -1/2 \}$ because the equation $x^2+3x+2$ has roots $-1$ and $-2$, the equation $2x^2+3x+1=0$ has roots $-1$ and $-1/2$, and for all the other permutations of $(1, 2, 3)$, the quadratic equations formed don't have any rational roots. Determine the maximum number of elements in $S(a, b, c)$.

2020 BMT Fall, 6

Tags: algebra
Given that $\tbinom{n}{k}=\tfrac{n!}{k!(n-k)!}$, the value of $$\sum_{n=3}^{10}\frac{\binom{n}{2}}{\binom{n}{3}\binom{n+1}{3}}$$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m+n$.

the 11th XMO, 9

$x,y\in\mathbb{R},(4x^3-3x)^2+(4y^3-3y)^2=1.\text { Find the maximum of } x+y.$

2010 Philippine MO, 3

Let $\mathbb{R}^*$ be the set of all real numbers, except $1$. Find all functions $f:\mathbb{R}^* \rightarrow \mathbb{R}$ that satisfy the functional equation $$x+f(x)+2f\left(\frac{x+2009}{x-1}\right)=2010$$.

2012 IMO Shortlist, A7

We say that a function $f:\mathbb{R}^k \rightarrow \mathbb{R}$ is a metapolynomial if, for some positive integers $m$ and $n$, it can be represented in the form \[f(x_1,\cdots , x_k )=\max_{i=1,\cdots , m} \min_{j=1,\cdots , n}P_{i,j}(x_1,\cdots , x_k),\] where $P_{i,j}$ are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.

2006 Estonia National Olympiad, 3

Tags: algebra
Let there be $ n \ge 2$ real numbers such that none of them is greater than the arithmetic mean of the other numbers. Prove that all the numbers are equal.

EMCC Guts Rounds, 2012

[u]Round 1[/u] [b]p1.[/b] Ravi has a bag with $100$ slips of paper in it. Each slip has one of the numbers $3, 5$, or $7$ written on it. Given that half of the slips have the number $3$ written on them, and the average of the values on all the slips is $4.4$, how many slips have $7$ written on them? [b]p2.[/b] In triangle $ABC$, point $D$ lies on side $AB$ such that $AB \perp CD$. It is given that $\frac{CD}{BD}=\frac12$, $AC = 29$, and $AD = 20$. Find the area of triangle $BCD$. [b]p3.[/b] Compute $(123 + 4)(123 + 5) - 123\cdot 132$. [u]Round 2[/u] [b]p4. [/b] David is evaluating the terms in the sequence $a_n = (n + 1)^3 - n^3$ for $n = 1, 2, 3,....$ (that is, $a_1 = 2^3 - 1^3$ , $a_2 = 3^3 - 2^3$, $a_3 = 4^3 - 3^3$, and so on). Find the first composite number in the sequence. (An positive integer is composite if it has a divisor other than 1 and itself.) [b]p5.[/b] Find the sum of all positive integers strictly less than $100$ that are not divisible by $3$. [b]p6.[/b] In how many ways can Alex draw the diagram below without lifting his pencil or retracing a line? (Two drawings are different if the order in which he draws the edges is different, or the direction in which he draws an edge is different). [img]https://cdn.artofproblemsolving.com/attachments/9/6/9d29c23b3ca64e787e717ceff22d45851ae503.png[/img] [u]Round 3[/u] [b]p7.[/b] Fresh Mann is a $9$th grader at Euclid High School. Fresh Mann thinks that the word vertices is the plural of the word vertice. Indeed, vertices is the plural of the word vertex. Using all the letters in the word vertice, he can make $m$ $7$-letter sequences. Using all the letters in the word vertex, he can make $n$ $6$-letter sequences. Find $m - n$. [b]p8.[/b] Fresh Mann is given the following expression in his Algebra $1$ class: $101 - 102 = 1$. Fresh Mann is allowed to move some of the digits in this (incorrect) equation to make it into a correct equation. What is the minimal number of digits Fresh Mann needs to move? [b]p9.[/b] Fresh Mann said, “The function $f(x) = ax^2+bx+c$ passes through $6$ points. Their $x$-coordinates are consecutive positive integers, and their y-coordinates are $34$, $55$, $84$, $119$, $160$, and $207$, respectively.” Sophy Moore replied, “You’ve made an error in your list,” and replaced one of Fresh Mann’s numbers with the correct y-coordinate. Find the corrected value. [u]Round 4[/u] [b]p10.[/b] An assassin is trying to find his target’s hotel room number, which is a three-digit positive integer. He knows the following clues about the number: (a) The sum of any two digits of the number is divisible by the remaining digit. (b) The number is divisible by $3$, but if the first digit is removed, the remaining two-digit number is not. (c) The middle digit is the only digit that is a perfect square. Given these clues, what is a possible value for the room number? [b]p11.[/b] Find a positive real number $r$ that satisfies $$\frac{4 + r^3}{9 + r^6}=\frac{1}{5 - r^3}- \frac{1}{9 + r^6}.$$ [b]p12.[/b] Find the largest integer $n$ such that there exist integers $x$ and $y$ between $1$ and $20$ inclusive with $$\left|\frac{21}{19} -\frac{x}{y} \right|<\frac{1}{n}.$$ PS. You had better use hide for answers. Last rounds have been posted [url=https://artofproblemsolving.com/community/c4h2784267p24464980]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Harvard-MIT Mathematics Tournament, 9

Tags: algebra
Suppose $P(x)$ is a monic polynomial of degree $2023$ such that $P(k) = k^{2023}P(1-\frac{1}{k})$ for every positive integer $1 \leq k \leq 2023$. Then $P(-1) = \frac{a}{b}$ where $a$ and $b$ are relatively prime integers. Compute the unique integer $0 \leq n < 2027$ such that $bn-a$ is divisible by the prime $2027$.

1969 All Soviet Union Mathematical Olympiad, 119

Tags: algebra , trinomial
For what minimal natural $a$ the polynomial $ax^2 + bx + c$ with the integer $c$ and $b$ has two different positive roots both less than one.