This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2025 Bulgarian Spring Mathematical Competition, 12.2

Tags: periodic , algebra
Determine all values of $a_0$ for which the sequence of real numbers with $a_{n+1}=3a_n - 4a_n^3$ for all $n\geq 0$ is periodic from the beginning.

2020 Paraguay Mathematical Olympiad, 5

Tags: algebra , sequence , sum
The general term of a sequence of numbers is defined as $a_n =\frac{1}{n^2 - n}$, for every integer $n \ge 3$. That is, $a_3 =\frac16$, $a_4 =\frac{1}{12}$, $a_5 =\frac{1}{20}$, and so on. Find a general expression for the sum $S_n$, which is the sum of all terms from $a_3$ until $a_n$.

2009 International Zhautykov Olympiad, 1

Find all pairs of integers $ (x,y)$, such that \[ x^2 \minus{} 2009y \plus{} 2y^2 \equal{} 0 \]

2007 USA Team Selection Test, 2

Let $n$ be a positive integer and let $a_1 \le a_2 \le \dots \le a_n$ and $b_1 \le b_2 \le \dots \le b_n$ be two nondecreasing sequences of real numbers such that \[ a_1 + \dots + a_i \le b_1 + \dots + b_i \text{ for every } i = 1, \dots, n \] and \[ a_1 + \dots + a_n = b_1 + \dots + b_n. \] Suppose that for every real number $m$, the number of pairs $(i,j)$ with $a_i-a_j=m$ equals the numbers of pairs $(k,\ell)$ with $b_k-b_\ell = m$. Prove that $a_i = b_i$ for $i=1,\dots,n$.

2022 Vietnam National Olympiad, 2

Find all function $f:\mathbb R^+ \rightarrow \mathbb R^+$ such that: \[f\left(\frac{f(x)}{x}+y\right)=1+f(y), \quad \forall x,y \in \mathbb R^+.\]

2022 Balkan MO Shortlist, A3

Let $a, b, c, d$ be non-negative real numbers such that \[\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1}=3.\] Prove that \[3(ab+bc+ca+ad+bd+cd)+\frac{4}{a+b+c+d}\leqslant 5.\][i]Vasile Cîrtoaje and Leonard Giugiuc[/i]

2016 Postal Coaching, 2

Determine all functions $f:\mathbb R\to\mathbb R$ such that for all $x, y \in \mathbb R$ $$f(xf(y) - yf(x)) = f(xy) - xy.$$

2020 Serbia National Math Olympiad, 1

Find all monic polynomials $P(x)$ such that the polynomial $P(x)^2-1$ is divisible by the polynomial $P(x+1)$.

1985 Traian Lălescu, 1.4

Without calculating the value of the determinant $$ \begin{vmatrix}1 &1 &3& 1\\1& 2& 3 &5\\ 3& 0& 5& 5\\ 0& a& -11a& a^{13}+9a\end{vmatrix} , $$ show that it is divisible by $ 26, $ for any integer $ a. $

2014 Lithuania Team Selection Test, 3

Given such positive real numbers $a, b$ and $c$, that the system of equations: $ \{\begin{matrix}a^2x+b^2y+c^2z=1&&\\xy+yz+zx=1&&\end{matrix} $ has exactly one solution of real numbers $(x, y, z)$. Prove, that there is a triangle, which borders lengths are equal to $a, b$ and $c$.

VMEO III 2006, 10.3

Find all functions $f : R \to R$ that satisfy $f(x^2 + f(y) - y) = (f(x))^2$ for all $x,y \in R$.

2000 China Team Selection Test, 2

Given positive integers $k, m, n$ such that $1 \leq k \leq m \leq n$. Evaluate \[\sum^{n}_{i=0} \frac{(-1)^i}{n+k+i} \cdot \frac{(m+n+i)!}{i!(n-i)!(m+i)!}.\]

2018 India IMO Training Camp, 2

Tags: algebra , function
Let $S$ be a finite set, and let $\mathcal{A}$ be the set of all functions from $S$ to $S$. Let $f$ be an element of $\mathcal{A}$, and let $T=f(S)$ be the image of $S$ under $f$. Suppose that $f\circ g\circ f\ne g\circ f\circ g$ for every $g$ in $\mathcal{A}$ with $g\ne f$. Show that $f(T)=T$.

2011 Indonesia TST, 1

Let $a, b, c$ be the sides of a triangle with $abc = 1$. Prove that $$\frac{\sqrt{b + c -a}}{a}+\frac{\sqrt{c + a - b}}{b}+\frac{\sqrt{a + b - c}}{c} \ge a + b + c$$

2010 Argentina National Olympiad, 5

Tags: algebra
$21$ numbers are written in a row. $u,v,w$ are three consecutive numbers so $v=\frac{2uw}{u+w}$ . The first number is $\frac{1}{100}$ , the last one is $\frac{1}{101}$ . Find the $15$th number.

2024 Girls in Mathematics Tournament, 1

Tags: algebra
The nonzero real numbers $a,b,c$ are such that: $a^2-bc= b^2-ac= c^2-ab= a^3+b^3+c^3$. Compute the possible values of $a+b+c$.

2005 China Northern MO, 5

Let $x, y, z$ be positive real numbers such that $x^2 + xy + y^2 = \frac{25}{4}$, $y^2 + yz + z^2 = 36$, and $z^2 + zx + x^2 = \frac{169}{4}$. Find the value of $xy + yz + zx$.

2017 German National Olympiad, 1

Given two real numbers $p$ and $q$, we study the following system of equations with variables $x,y \in \mathbb{R}$: \begin{align*} x^2+py+q&=0,\\ y^2+px+q&=0. \end{align*} Determine the number of distinct solutions $(x,y)$ in terms of $p$ and $q$.

2016 Nigerian Senior MO Round 2, Problem 6

Given that $a, b, c, d \in \mathbb{R}$, prove that $(ab+cd)^2 \leq (a^2+c^2)(b^2+d^2)$.

2017 Canada National Olympiad, 1

For pairwise distinct nonnegative reals $a,b,c$, prove that $$\frac{a^2}{(b-c)^2}+\frac{b^2}{(c-a)^2}+\frac{c^2}{(b-a)^2}>2$$.

2019 Teodor Topan, 3

Let be a positive real number $ r, $ a natural number $ n, $ and a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ satisfying $ f(rxy)=(f(x)f(y))^n, $ for any real numbers $ x,y. $ [b]a)[/b] Give three distinct examples of what $ f $ could be if $ n=1. $ [b]b)[/b] For a fixed $ n\ge 2, $ find all possibilities of what $ f $ could be. [i]Bogdan Blaga[/i]

2014 Indonesia MO Shortlist, A1

Let $a, b$ be positive real numbers such that there exist infinite number of natural numbers $k$ such that $\lfloor a^k \rfloor + \lfloor b^k \rfloor = \lfloor a \rfloor ^k + \lfloor b \rfloor ^k$ . Prove that $\lfloor a^{2014} \rfloor + \lfloor b^{2014} \rfloor = \lfloor a \rfloor ^{2014} + \lfloor b \rfloor ^{2014}$

1981 Czech and Slovak Olympiad III A, 5

Let $n$ be a positive integer. Determine the maximum of the sum $x_1+\cdots+x_n$ where $x_1,\ldots,x_n$ are non-negative integers satisfying the condition \[x_1^3+\cdots+x_n^3\le7n.\]

2017 Balkan MO Shortlist, A6

Find all functions $f : \mathbb R\to\mathbb R $ such that \[f(x+yf(x^2))=f(x)+xf(xy)\] for all real numbers $x$ and $y$.

IV Soros Olympiad 1997 - 98 (Russia), 10.7

How many different solutions on the interval $[0, \pi]$ does the equation $$6\sqrt2 \sin x \cdot tgx - 2\sqrt2 tgx +3\sin x -1=0$$ have?