This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2015 USAJMO, 2

Solve in integers the equation \[ x^2+xy+y^2 = \left(\frac{x+y}{3}+1\right)^3. \]

1993 Polish MO Finals, 1

Tags: algebra
Find all rational solutions to: \begin{eqnarray*} t^2 - w^2 + z^2 &=& 2xy \\ t^2 - y^2 + w^2 &=& 2xz \\ t^2 - w^2 + x^2 &=& 2yz . \end{eqnarray*}

2012 South East Mathematical Olympiad, 1

Find a triple $(l, m, n)$ of positive integers $(1<l<m<n)$, such that $\sum_{k=1}^{l}k, \sum_{k=l+1}^{m}k, \sum_{k=m+1}^{n}k$ form a geometric sequence in order.

2016 Irish Math Olympiad, 5

Let $a_1, a_2, ..., a_m$ be positive integers, none of which is equal to $10$, such that $a_1 + a_2 + ...+ a_m = 10m$. Prove that $(a_1a_2a_3 \cdot ...\cdot a_m)^{1/m} \le 3\sqrt{11}$.

1995 Hungary-Israel Binational, 3

The polynomial $ f(x)\equal{}ax^2\plus{}bx\plus{}c$ has real coefficients and satisfies $ \left|f(x)\right|\le 1$ for all $ x\in [0, 1]$. Find the maximal value of $ |a|\plus{}|b|\plus{}|c|$.

1998 German National Olympiad, 6a

Find all real pairs $(x,y)$ that solve the system of equations \begin{align} x^5 &= 21x^3+y^3 \\ y^5 &= x^3+21y^3. \end{align}

1981 Romania Team Selection Tests, 3.

Determine the lengths of the edges of a right tetrahedron of volume $a^3$ so that the sum of its edges' lengths is minumum.

Kvant 2020, M2627

An infinite arithmetic progression is given. The products of the pairs of its members are considered. Prove that two of these numbers differ by no more than 1. [i]Proposed by A. Kuznetsov[/i]

1983 AIME Problems, 13

For $\{1, 2, 3, \dots, n\}$ and each of its nonempty subsets a unique [b]alternating sum[/b] is defined as follows: Arrange the numbers in the subset in decreasing order and then, beginning with the largest, alternately add and subtract successive numbers. (For example, the alternating sum for $\{1, 2, 4, 6, 9\}$ is $9 - 6 + 4 - 2 + 1 = 6$ and for $\{5\}$ it is simply 5.) Find the sum of all such alternating sums for $n = 7$.

2008 Moldova National Olympiad, 11.2

Tags: algebra
Let $ (a_{n})_{n\ge 1} $ be a sequence such that: $ a_{1}=1; a_{n+1}=\frac{n}{a_{n}+1}.$ Find $ [a_{2008}] $

2012 AMC 8, 1

Tags: ratio , algebra
Rachelle uses 3 pounds of meat to make 8 hamburgers for her family. How many pounds of meat does she need to make 24 hamburgers for a neighborhood picnic? $\textbf{(A)}\hspace{.05in}6 \qquad \textbf{(B)}\hspace{.05in}6\dfrac23 \qquad \textbf{(C)}\hspace{.05in}7\dfrac12 \qquad \textbf{(D)}\hspace{.05in}8 \qquad \textbf{(E)}\hspace{.05in}9 $

1998 Slovenia Team Selection Test, 6

Let $a_0 = 1998$ and $a_{n+1} =\frac{a_n^2}{a_n +1}$ for each nonnegative integer $n$. Prove that $[a_n] = 1994- n$ for $0 \le n \le 1000$

2018 Taiwan TST Round 1, 5

Find all functions $ f: \mathbb{N} \to \mathbb{Z} $ satisfying $$ n \mid f\left(m\right) \Longleftrightarrow m \mid \sum\limits_{d \mid n}{f\left(d\right)} $$ holds for all positive integers $ m,n $

1980 IMO Shortlist, 13

Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

2008 IMC, 4

Let $ \mathbb{Z}[x]$ be the ring of polynomials with integer coefficients, and let $ f(x), g(x) \in\mathbb{Z}[x]$ be nonconstant polynomials such that $ g(x)$ divides $ f(x)$ in $ \mathbb{Z}[x]$. Prove that if the polynomial $ f(x)\minus{}2008$ has at least 81 distinct integer roots, then the degree of $ g(x)$ is greater than 5.

2007 ITest, 25

Ted's favorite number is equal to \[1\cdot\binom{2007}1+2\cdot\binom{2007}2+3\cdot\binom{2007}3+\cdots+2007\cdot\binom{2007}{2007}.\] Find the remainder when Ted's favorite number is divided by $25$. $\begin{array}{@{\hspace{-1em}}l@{\hspace{14em}}l@{\hspace{14em}}l} \textbf{(A) }0&\textbf{(B) }1&\textbf{(C) }2\\\\ \textbf{(D) }3&\textbf{(E) }4&\textbf{(F) }5\\\\ \textbf{(G) }6&\textbf{(H) }7&\textbf{(I) }8\\\\ \textbf{(J) }9&\textbf{(K) }10&\textbf{(L) }11\\\\ \textbf{(M) }12&\textbf{(N) }13&\textbf{(O) }14\\\\ \textbf{(P) }15&\textbf{(Q) }16&\textbf{(R) }17\\\\ \textbf{(S) }18&\textbf{(T) }19&\textbf{(U) }20\\\\ \textbf{(V) }21&\textbf{(W) }22 & \textbf{(X) }23\\\\ \textbf{(Y) }24 \end{array}$

2009 Hong Kong TST, 5

Let $ a,b,c$ be the three sides of a triangle. Determine all possible values of $ \frac {a^2 \plus{} b^2 \plus{} c^2}{ab \plus{} bc \plus{} ca}$

2005 China Team Selection Test, 3

Tags: function , algebra
Let $\alpha$ be given positive real number, find all the functions $f: N^{+} \rightarrow R$ such that $f(k + m) = f(k) + f(m)$ holds for any positive integers $k$, $m$ satisfying $\alpha m \leq k \leq (\alpha + 1)m$.

2019 Harvard-MIT Mathematics Tournament, 8

There is a unique function $f: \mathbb{N} \to \mathbb{R}$ such that $f(1) > 0$ and such that \[\sum_{d \mid n} f(d) f\left(\frac{n}{d}\right) = 1\] for all $n \ge 1$. What is $f(2018^{2019})$?

2004 Manhattan Mathematical Olympiad, 2

Assume $a,b,c$ are odd integers. Show that the quadratic equation \[ ax^2 + bx + c = 0 \] has no rational solutions. (A number is said to be [i]rational[/i], if it can be written as a fraction: $\frac{\text{integer}}{\text{integer}}$.)

1990 All Soviet Union Mathematical Olympiad, 517

What is the largest possible value of $|...| |a_1 - a_2| - a_3| - ... - a_{1990}|$, where $a_1, a_2, ... , a_{1990}$ is a permutation of $1, 2, 3, ... , 1990$?

2014 Online Math Open Problems, 21

Consider a sequence $x_1,x_2,\cdots x_{12}$ of real numbers such that $x_1=1$ and for $n=1,2,\dots,10$ let \[ x_{n+2}=\frac{(x_{n+1}+1)(x_{n+1}-1)}{x_n}. \] Suppose $x_n>0$ for $n=1,2,\dots,11$ and $x_{12}=0$. Then the value of $x_2$ can be written as $\frac{\sqrt{a}+\sqrt{b}}{c}$ for positive integers $a,b,c$ with $a>b$ and no square dividing $a$ or $b$. Find $100a+10b+c$. [i]Proposed by Michael Kural[/i]

1979 Romania Team Selection Tests, 2.

Tags: sequence , algebra
For each $n\in \mathbb{Z}_{>0}$ let $a_n$ be the closest integer to $\sqrt{n}$. Compute the general term of the sequence: $(b_n)_{n\geqslant 1}$ with \[b_n=\sum_{k=1}^{n^2} a_k.\] [i]Pall Dalyay[/i]

1993 Austrian-Polish Competition, 6

If $a,b \ge 0$ are real numbers, prove the inequality $$\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2\leq\frac{a+\sqrt[3] {a^2b}+\sqrt[3] {ab^2}+b}{4}\leq\frac{a+\sqrt{ab}+b}{3} \leq \sqrt{\left(\frac{a^{2/3}+b^{2/3}}{2}\right)^{3}}$$ For each of the inequalities, find the cases of equality.

2020 Lusophon Mathematical Olympiad, 6

Prove that $\lfloor{\sqrt{9n+7}}\rfloor=\lfloor{\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}}\rfloor$ for all postive integer $n$.