This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2025 Caucasus Mathematical Olympiad, 1

Tags: algebra
Anya and Vanya’s houses are located on the straight road. The distance between their houses is divided by a shop and a school into three equal parts. If Anya and Vanya leave their houses at the same time and walk towards each other, they will meet near the shop. If Anya rides a scooter, then her speed will increase by $150\,\text{m/min}$, and they will meet near the school. Find Vanya’s speed of walking.

2014 CHMMC (Fall), 1

Tags: algebra
For $a_1,..., a_5 \in R$, $$\frac{a_1}{k^2 + 1}+ ... +\frac{a_5}{k^2 + 5}=\frac{1}{k^2}$$ for all $k \in \{2, 3, 4, 5, 6\}$. Calculate $$\frac{a_1}{2}+... +\frac{a_5}{6}.$$

2014 Contests, 2

An urn contains $4$ green balls and $6$ blue balls. A second urn contains $16$ green balls and $N$ blue balls. A single ball is drawn at random from each urn. The probability that both balls are of the same color is $0.58$. Find $N$.

2021 Purple Comet Problems, 5

Tags: algebra
Ted is fi ve times as old as Rosie was when Ted was Rosie's age. When Rosie reaches Ted's current age, the sum of their ages will be $72$. Find Ted's current age.

2022 JBMO Shortlist, A3

Let $a, b,$ and $c$ be positive real numbers such that $a + b + c = 1$. Prove the following inequality $$a \sqrt[3]{\frac{b}{a}} + b \sqrt[3]{\frac{c}{b}} + c \sqrt[3]{\frac{a}{c}} \le ab + bc + ca + \frac{2}{3}.$$ Proposed by [i]Anastasija Trajanova, Macedonia[/i]

2006 IMC, 6

Find all sequences $a_{0}, a_{1},\ldots, a_{n}$ of real numbers such that $a_{n}\neq 0$, for which the following statement is true: If $f: \mathbb{R}\to\mathbb{R}$ is an $n$ times differentiable function and $x_{0}<x_{1}<\ldots <x_{n}$ are real numbers such that $f(x_{0})=f(x_{1})=\ldots =f(x_{n})=0$ then there is $h\in (x_{0}, x_{n})$ for which \[a_{0}f(h)+a_{1}f'(h)+\ldots+a_{n}f^{(n)}(h)=0.\]

2007 IMC, 4

Let $ n > 1$ be an odd positive integer and $ A = (a_{ij})_{i, j = 1..n}$ be the $ n \times n$ matrix with \[ a_{ij}= \begin{cases}2 & \text{if }i = j \\ 1 & \text{if }i-j \equiv \pm 2 \pmod n \\ 0 & \text{otherwise}\end{cases}.\] Find $ \det A$.

1988 Tournament Of Towns, (180) 3

It is known that $1$ and $2$ are roots of a polynomial with integer coefficients. Prove that the polynomial has a coefficient with value less than $-1$ .

2021 Estonia Team Selection Test, 2

Positive real numbers $a, b, c$ satisfy $abc = 1$. Prove that $$\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a} \ge \frac32$$

2006 Taiwan TST Round 1, 1

Tags: algebra , function
Let $d,p,q$ be fixed positive integers, and $d$ is not a perfect square. $\mathbb{N}$ is the set of all positive integers, and $S=\{m+n\sqrt{d}|m,n \in \mathbb{N}\} \cup \{0\}$. Suppose the function $f: S \to S$ satisfies the following conditions for all $x,y \in S$: (i) $f((xy)^p)=(f(x)f(y))^p$ (ii)$f((x+y)^q)=(f(x)+f(y))^q$ Find the function $f$.

2014 Saudi Arabia IMO TST, 4

Find all functions $f:\mathbb{N}\rightarrow\mathbb{N}$ such that \[f(n+1)>\frac{f(n)+f(f(n))}{2}\] for all $n\in\mathbb{N}$, where $\mathbb{N}$ is the set of strictly positive integers.

2018 IFYM, Sozopol, 7

The rows $x_n$ and $y_n$ of positive real numbers are such that: $x_{n+1}=x_n+\frac{1}{2y_n}$ and $y_{n+1}=y_n+\frac{1}{2x_n}$ for each positive integer $n$. Prove that at least one of the numbers $x_{2018}$ and $y_{2018}$ is bigger than 44,9

2021 Israel TST, 2

Find all unbounded functions $f:\mathbb Z \rightarrow \mathbb Z$ , such that $f(f(x)-y)|x-f(y)$ holds for any integers $x,y$.

2021 Austrian MO National Competition, 4

Let $a$ be a real number. Determine all functions $f: R \to R$ with $f (f (x) + y) = f (x^2 - y) + af (x) y$ for all $x, y \in R$. (Walther Janous)

1951 Miklós Schweitzer, 2

Denote by $ \mathcal{H}$ a set of sequences $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}$ of real numbers having the following properties: (i) If $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$, then $ S'\equal{}\{s_n\}_{n\equal{}2}^{\infty}\in \mathcal{H}$; (ii) If $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$ and $ T\equal{}\{t_n\}_{n\equal{}1}^{\infty}$, then $ S\plus{}T\equal{}\{s_n\plus{}t_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$ and $ ST\equal{}\{s_nt_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$; (iii) $ \{\minus{}1,\minus{}1,\dots,\minus{}1,\dots\}\in \mathcal{H}$. A real valued function $ f(S)$ defined on $ \mathcal{H}$ is called a quasi-limit of $ S$ if it has the following properties: If $ S\equal{}{c,c,\dots,c,\dots}$, then $ f(S)\equal{}c$; If $ s_i\geq 0$, then $ f(S)\geq 0$; $ f(S\plus{}T)\equal{}f(S)\plus{}f(T)$; $ f(ST)\equal{}f(S)f(T)$, $ f(S')\equal{}f(S)$ Prove that for every $ S$, the quasi-limit $ f(S)$ is an accumulation point of $ S$.

2019 USEMO, 2

Let $\mathbb{Z}[x]$ denote the set of single-variable polynomials in $x$ with integer coefficients. Find all functions $\theta : \mathbb{Z}[x] \to \mathbb{Z}[x]$ (i.e. functions taking polynomials to polynomials) such that [list] [*] for any polynomials $p, q \in \mathbb{Z}[x]$, $\theta(p + q) = \theta(p) + \theta(q)$; [*] for any polynomial $p \in \mathbb{Z}[x]$, $p$ has an integer root if and only if $\theta(p)$ does. [/list] [i]Carl Schildkraut[/i]

2022 BMT, 17

Compute the number of ordered triples $(a, b, c)$ of integers between $-100$ and $100$ inclusive satisfying the simultaneous equations $$a^3 - 2a = abc - b - c$$ $$b^3 - 2b = bca - c - a$$ $$c^3 - 2c = cab - a - b.$$

2019 PUMaC Algebra A, 6

Tags: algebra
A [i]weak binary representation[/i] of a nonnegative integer $n$ is a representation $n=a_0+2\cdot a_1+2^2\cdot a_2+\dots$ such that $a_i\in\{0,1,2,3,4,5\}$. Determine the number of such representations for $513$.

2016 BmMT, Ind. Round

[b]p1.[/b] David is taking a $50$-question test, and he needs to answer at least $70\%$ of the questions correctly in order to pass the test. What is the minimum number of questions he must answer correctly in order to pass the test? [b]p2.[/b] You decide to flip a coin some number of times, and record each of the results. You stop flipping the coin once you have recorded either $20$ heads, or $16$ tails. What is the maximum number of times that you could have flipped the coin? [b]p3.[/b] The width of a rectangle is half of its length. Its area is $98$ square meters. What is the length of the rectangle, in meters? [b]p4.[/b] Carol is twice as old as her younger brother, and Carol's mother is $4$ times as old as Carol is. The total age of all three of them is $55$. How old is Carol's mother? [b]p5.[/b] What is the sum of all two-digit multiples of $9$? [b]p6.[/b] The number $2016$ is divisible by its last two digits, meaning that $2016$ is divisible by $16$. What is the smallest integer larger than $2016$ that is also divisible by its last two digits? [b]p7.[/b] Let $Q$ and $R$ both be squares whose perimeters add to $80$. The area of $Q$ to the area of $R$ is in a ratio of $16 : 1$. Find the side length of $Q$. [b]p8.[/b] How many $8$-digit positive integers have the property that the digits are strictly increasing from left to right? For instance, $12356789$ is an example of such a number, while $12337889$ is not. [b]p9.[/b] During a game, Steve Korry attempts $20$ free throws, making 16 of them. How many more free throws does he have to attempt to finish the game with $84\%$ accuracy, assuming he makes them all? [b]p10.[/b] How many di erent ways are there to arrange the letters $MILKTEA$ such that $TEA$ is a contiguous substring? For reference, the term "contiguous substring" means that the letters $TEA$ appear in that order, all next to one another. For example, $MITEALK$ would be such a string, while $TMIELKA$ would not be. [b]p11.[/b] Suppose you roll two fair $20$-sided dice. What is the probability that their sum is divisible by $10$? [b]p12.[/b] Suppose that two of the three sides of an acute triangle have lengths $20$ and $16$, respectively. How many possible integer values are there for the length of the third side? [b]p13.[/b] Suppose that between Beijing and Shanghai, an airplane travels $500$ miles per hour, while a train travels at $300$ miles per hour. You must leave for the airport $2$ hours before your flight, and must leave for the train station $30$ minutes before your train. Suppose that the two methods of transportation will take the same amount of time in total. What is the distance, in miles, between the two cities? [b]p14.[/b] How many nondegenerate triangles (triangles where the three vertices are not collinear) with integer side lengths have a perimeter of $16$? Two triangles are considered distinct if they are not congruent. [b]p15.[/b] John can drive $100$ miles per hour on a paved road and $30$ miles per hour on a gravel road. If it takes John $100$ minutes to drive a road that is $100$ miles long, what fraction of the time does John spend on the paved road? [b]p16.[/b] Alice rolls one pair of $6$-sided dice, and Bob rolls another pair of $6$-sided dice. What is the probability that at least one of Alice's dice shows the same number as at least one of Bob's dice? [b]p17.[/b] When $20^{16}$ is divided by $16^{20}$ and expressed in decimal form, what is the number of digits to the right of the decimal point? Trailing zeroes should not be included. [b]p18.[/b] Suppose you have a $20 \times 16$ bar of chocolate squares. You want to break the bar into smaller chunks, so that after some sequence of breaks, no piece has an area of more than $5$. What is the minimum possible number of times that you must break the bar? For an example of how breaking the chocolate works, suppose we have a $2\times 2$ bar and wish to break it entirely into $1\times 1$ bars. We can break it once to get two $2\times 1$ bars. Then, we would have to break each of these individual bars in half in order to get all the bars to be size $1\times 1$, and we end up using $3$ breaks in total. [b]p19.[/b] A class of $10$ students decides to form two distinguishable committees, each with $3$ students. In how many ways can they do this, if the two committees can have no more than one student in common? [b]p20.[/b] You have been told that you are allowed to draw a convex polygon in the Cartesian plane, with the requirements that each of the vertices has integer coordinates whose values range from $0$ to $10$ inclusive, and that no pair of vertices can share the same $x$ or $y$ coordinate value (so for example, you could not use both $(1, 2)$ and $(1, 4)$ in your polygon, but $(1, 2)$ and $(2, 1)$ is fine). What is the largest possible area that your polygon can have? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1989 IMO Longlists, 12

Let $ P(x)$ be a polynomial such that the following inequalities are satisfied: \[ P(0) > 0;\]\[ P(1) > P(0);\]\[ P(2) > 2P(1) \minus{} P(0);\]\[ P(3) > 3P(2) \minus{} 3P(1) \plus{} P(0);\] and also for every natural number $ n,$ \[ P(n\plus{}4) > 4P(n\plus{}3) \minus{} 6P(n\plus{}2)\plus{}4P(n \plus{} 1) \minus{} P(n).\] Prove that for every positive natural number $ n,$ $ P(n)$ is positive.

1968 All Soviet Union Mathematical Olympiad, 100

The sequence $a_1,a_2,a_3,...$, is constructed according to the rule $$a_1=1, a_2=a_1+1/a_1, ... , a_{n+1}=a_n+1/a_n, ...$$ Prove that $a_{100} > 14$.

2004 Czech-Polish-Slovak Match, 4

Solve in real numbers the system of equations: \begin{align*} \frac{1}{xy}&=\frac{x}{z}+1 \\ \frac{1}{yz}&=\frac{y}{x}+1 \\ \frac{1}{zx}&=\frac{z}{y}+1 \\ \end{align*}

2008 Junior Balkan Team Selection Tests - Moldova, 8

Tags: algebra , induction
Archipelago consists of $ n$ islands : $ I_1,I_2,...,I_n$ and $ a_1,a_2,...,a_n$ - number of the roads on each island. $ a_1 \equal{} 55$, $ a_k \equal{} a_{k \minus{} 1} \plus{} (k \minus{} 1)$, ($ k \equal{} 2,3,...,n$) a) Does there exist an island with 2008 roads? b) Calculate $ a_1 \plus{} a_2 \plus{} ... \plus{} a_n.$

2002 India IMO Training Camp, 17

Let $n$ be a positive integer and let $(1+iT)^n=f(T)+ig(T)$ where $i$ is the square root of $-1$, and $f$ and $g$ are polynomials with real coefficients. Show that for any real number $k$ the equation $f(T)+kg(T)=0$ has only real roots.

2006 Iran MO (3rd Round), 2

$n$ is a natural number that $\frac{x^{n}+1}{x+1}$ is irreducible over $\mathbb Z_{2}[x]$. Consider a vector in $\mathbb Z_{2}^{n}$ that it has odd number of $1$'s (as entries) and at least one of its entries are $0$. Prove that these vector and its translations are a basis for $\mathbb Z_{2}^{n}$