This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2025 China Team Selection Test, 24

Find all functions $f:\mathbb Z\to\mathbb Z$ such that $f$ is unbounded and \[2f(m)f(n)-f(n-m)-1\] is a perfect square for all integer $m,n.$

2010 Slovenia National Olympiad, 4

Find all non-zero real numbers $x$ such that \[\min \left\{ 4, x+ \frac 4x \right\} \geq 8 \min \left\{ x,\frac 1x\right\} .\]

2016 Switzerland Team Selection Test, Problem 6

Prove that for every nonnegative integer $n$, the number $7^{7^{n}}+1$ is the product of at least $2n+3$ (not necessarily distinct) primes.

KoMaL A Problems 2024/2025, A. 895

Let's call a function $f:\mathbb R\to\mathbb R$[i] weakly periodic[/i] if it is continuous and $f(x+1)=f(f(x))+1$ for all $x\in\mathbb R$. a) Does there exist a weakly periodic function such that $f(x)>x$ for all $x\in\mathbb R$? b) Does there exist a weakly periodic function such that $f(x)<x$ for all $x\in\mathbb R$? [i]Proposed by: András Imolay, Budapest[/i]

2021 BMT, 16

Jason and Valerie agree to meet for game night, which runs from $4:00$ PM to $5:00$ PM. Jason and Valerie each choose a random time from $4:00$ PM to $5:00$ PM to show up. If Jason arrives first, he will wait $20$ minutes for Valerie before leaving. If Valerie arrives first, she will wait $10$ minutes for Jason before leaving. What is the probability that Jason and Valerie successfully meet each other for game night?

2019 CMIMC, 8

Tags: algebra
It is given that the roots of the polynomial $P(z) = z^{2019} - 1$ can be written in the form $z_k = x_k + iy_k$ for $1\leq k\leq 2019$. Let $Q$ denote the monic polynomial with roots equal to $2x_k + iy_k$ for $1\leq k\leq 2019$. Compute $Q(-2)$.

2011 China Second Round Olympiad, 4

If ${\cos^5 x}-{\sin^5 x}<7({\sin^3 x}-{\cos ^3 x}) $ (for $x\in [ 0,2\pi) $), then find the range of $x$.

2013 Junior Balkan Team Selection Tests - Romania, 1

If $a, b, c > 0$ satisfy $a + b + c = 3$, then prove that $$\frac{a^2(b + 1)}{ ab + a + b} + \frac{b^2(c + 1)}{ bc + b + c} + \frac{c^2(a + 1)}{ ca + c + a} \ge 2$$ Mathematical Excalibur P322/Vol.14, no.2

2017 Purple Comet Problems, 16

Tags: sequence , algebra
Let $a_1 = 1 +\sqrt2$ and for each $n \ge 1$ de ne $a_{n+1} = 2 -\frac{1}{a_n}$. Find the greatest integer less than or equal to the product $a_1a_2a_3 ... a_{200}$.

2002 Switzerland Team Selection Test, 5

Tags: search , function , algebra
Find all $f: R\rightarrow R$ such that (i) The set $\{\frac{f(x)}{x}| x\in R-\{0\}\}$ is finite (ii) $f(x-1-f(x)) = f(x)-1-x$ for all $x$

2010 Saudi Arabia BMO TST, 4

Let $a > 0$. If the system $$\begin{cases} a^x + a^y + a^z = 14 - a \\ x + y + z = 1 \end{cases}$$ has a solution in real numbers, prove that $a \le 8$.

1992 IMO Longlists, 68

Show that the numbers $\tan \left(\frac{r \pi }{15}\right)$, where $r$ is a positive integer less than $15$ and relatively prime to $15$, satisfy \[x^8 - 92x^6 + 134x^4 - 28x^2 + 1 = 0.\]

1986 Putnam, A6

Let $a_1, a_2, \dots, a_n$ be real numbers, and let $b_1, b_2, \dots, b_n$ be distinct positive integers. Suppose that there is a polynomial $f(x)$ satisfying the identity \[ (1-x)^n f(x) = 1 + \sum_{i=1}^n a_i x^{b_i}. \] Find a simple expression (not involving any sums) for $f(1)$ in terms of $b_1, b_2, \dots, b_n$ and $n$ (but independent of $a_1, a_2, \dots, a_n$).

1996 Abels Math Contest (Norwegian MO), 4

Let $f : N \to N$ be a function such that $f(f(1995)) = 95, f(xy) = f(x)f(y)$ and $f(x) \le x$ for all $x,y$. Find all possible values of $f(1995)$.

2016 Thailand TSTST, 1

Find all polynomials $P\in\mathbb{Z}[x]$ such that $$|P(x)-x|\leq x^2+1$$ for all real numbers $x$.

1989 IMO Longlists, 45

Let $ (\log_2(x))^2 \minus{} 4 \cdot \log_2(x) \minus{} m^2 \minus{} 2m \minus{} 13 \equal{} 0$ be an equation in $ x.$ Prove: [b](a)[/b] For any real value of $ m$ the equation has two distinct solutions. [b](b)[/b] The product of the solutions of the equation does not depend on $ m.$ [b](c)[/b] One of the solutions of the equation is less than 1, while the other solution is greater than 1. Find the minimum value of the larger solution and the maximum value of the smaller solution.

1957 Moscow Mathematical Olympiad, 366

Solve the system: $$\begin{cases} \dfrac{2x_1^2}{1+x_1^2}=x_2 \\ \\ \dfrac{2x_2^2}{1+x_2^2}=x_3\\ \\ \dfrac{2x_3^2}{1+x_3^2}=x_1\end{cases}$$

ABMC Speed Rounds, 2019

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Compute the sum $2019 + 201 + 20 + 2$. [b]p2.[/b] The sequence $100, 102, 104,..., 996$ and $998$ is the sequence of all three-digit even numbers. How many three digit even numbers are there? [b]p3.[/b] Find the units digit of $25\times 37\times 113\times 22$. [b]p4.[/b] Samuel has a number in his head. He adds $4$ to the number and then divides the result by $2$. After doing this, he ends up with the same number he had originally. What is his original number? [b]p5.[/b] According to Shay's Magazine, every third president is terrible (so the third, sixth, ninth president and so on were all terrible presidents). If there have been $44$ presidents, how many terrible presidents have there been in total? [b]p6.[/b] In the game Tic-Tac-Toe, a player wins by getting three of his or her pieces in the same row, column, or diagonal of a $3\times 3$ square. How many configurations of $3$ pieces are winning? Rotations and reflections are considered distinct. [b]p7.[/b] Eddie is a sad man. Eddie is cursed to break his arm $4$ times every $20$ years. How many times would he break his arm by the time he reaches age $100$? [b]p8. [/b]The figure below is made from $5$ congruent squares. If the figure has perimeter $24$, what is its area? [img]https://cdn.artofproblemsolving.com/attachments/1/9/6295b26b1b09cacf0c32bf9d3ba3ce76ddb658.png[/img] [b]p9.[/b] Sancho Panza loves eating nachos. If he eats $3$ nachos during the first minute, $4$ nachos during the second, $5$ nachos during the third, how many nachos will he have eaten in total after $15$ minutes? [b]p10.[/b] If the day after the day after the day before Wednesday was two days ago, then what day will it be tomorrow? [b]p11.[/b] Neetin the Rabbit and Poonam the Meerkat are in a race. Poonam can run at $10$ miles per hour, while Neetin can only hop at $2$ miles per hour. If Neetin starts the race $2$ miles ahead of Poonam, how many minutes will it take for Poonam to catch up with him? [b]p12.[/b] Dylan has a closet with t-shirts: $3$ gray, $4$ blue, $2$ orange, $7$ pink, and $2$ black. Dylan picks one shirt at random from his closet. What is the probability that Dylan picks a pink or a gray t-shirt? [b]p13.[/b] Serena's brain is $200\%$ the size of Eric's brain, and Eric's brain is $200\%$ the size of Carlson's. The size of Carlson's brain is what percent the size of Serena's? [b]p14.[/b] Find the sum of the coecients of $(2x + 1)^3$ when it is fully expanded. [b]p15. [/b]Antonio loves to cook. However, his pans are weird. Specifically, the pans are rectangular prisms without a top. What is the surface area of the outside of one of Antonio's pans if their volume is $210$, and their length and width are $6$ and $5$, respectively? [b]p16.[/b] A lattice point is a point on the coordinate plane with $2$ integer coordinates. For example, $(3, 4)$ is a lattice point since $3$ and $4$ are both integers, but $(1.5, 2)$ is not since $1.5$ is not an integer. How many lattice points are on the graph of the equation $x^2 + y^2 = 625$? [b]p17.[/b] Jonny has a beaker containing $60$ liters of $50\%$ saltwater ($50\%$ salt and $50\%$ water). Jonny then spills the beaker and $45$ liters pour out. If Jonny adds $45$ liters of pure water back into the beaker, what percent of the new mixture is salt? [b]p18.[/b] There are exactly 25 prime numbers in the set of positive integers between $1$ and $100$, inclusive. If two not necessarily distinct integers are randomly chosen from the set of positive integers from $1$ to $100$, inclusive, what is the probability that at least one of them is prime? [b]p19.[/b] How many consecutive zeroes are at the end of $12!$ when it is expressed in base $6$? [b]p20.[/b] Consider the following figure. How many triangles with vertices and edges from the following figure contain exactly $1$ black triangle? [img]https://cdn.artofproblemsolving.com/attachments/f/2/a1c400ff7d06b583c1906adf8848370e480895.png[/img] [b]p21.[/b] After Akshay got kicked o the school bus for rowdy behavior, he worked out a way to get home from school with his dad. School ends at $2:18$ pm, but since Akshay walks slowly he doesn't get to the front door until $2:30$. His dad doesn't like to waste time, so he leaves home everyday such that he reaches the high school at exactly $2:30$ pm, instantly picks up Akshay and turns around, then drives home. They usually get home at $3:30$ pm. However, one day Akshay left school early at exactly $2:00$ pm because he was expelled. Trying to delay telling his dad for as long as possible, Akshay starts jogging home. His dad left home at the regular time, saw Akshay on the way, picked him up and turned around instantly. They then drove home while Akshay's dad yelled at him for being a disgrace. They reached home at $3:10$ pm. How long had Akshay been walking before his dad picked him up? [b]p22.[/b] In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $O$. Then $\angle BOC = \angle BCD$, $\angle COD =\angle BAD$, $AB = 4$, $DC = 6$, and $BD = 5$. What is the length of $BO$? [b]p23.[/b] A standard six-sided die is rolled. The number that comes up first determines the number of additional times the die will be rolled (so if the first number is $3$, then the die will be rolled $3$ more times). Each time the die is rolled, its value is recorded. What is the expected value of the sum of all the rolls? [b]p24.[/b] Dora has a peculiar calculator that can only perform $2$ operations: either adding $1$ to the current number or squaring the current number. Each minute, Dora randomly chooses an operation to apply to her number. She starts with $0$. What is the expected number of minutes it takes Dora's number to become greater than or equal to $10$? [b]p25.[/b] Let $\vartriangle ABC$ be such that $AB = 2$, $BC = 1$, and $\angle ACB = 90^o$. Let points $D$ and $E$ be such that $\vartriangle ADE$ is equilateral, $D$ is on segment $\overline{BC}$, and $D$ and $E$ are not on the same side of $\overline{AC}$. Segment $\overline{BE}$ intersects the circumcircle of $\vartriangle ADE$ at a second point $F$. If $BE =\sqrt{6}$, find the length of $\overline{BF}$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1989 French Mathematical Olympiad, Problem 5

Tags: summation , algebra
Let $a_1,a_2,\ldots,a_n$ be positive real numbers. Denote $$s=\sum_{k=1}^na_k\text{ and }s'=\sum_{k=1}^na_k^{1-\frac1k}.$$ (a) Let $\lambda>1$ be a real number. Show that $s'<\lambda s+\frac\lambda{\lambda-1}$. (b) Deduce that $\sqrt{s'}<\sqrt s+1$.

1978 IMO Longlists, 53

Determine all the triples $(a, b, c)$ of positive real numbers such that the system \[ax + by -cz = 0,\]\[a \sqrt{1-x^2}+b \sqrt{1-y^2}-c \sqrt{1-z^2}=0,\] is compatible in the set of real numbers, and then find all its real solutions.

Russian TST 2018, P3

Let $a < b$ be positive integers. Prove that there is a positive integer $n{}$ and a polynomial of the form \[\pm1\pm x\pm x^2\pm\cdots\pm x^n,\]divisible by the polynomial $1+x^a+x^b$.

2016 Belarus Team Selection Test, 2

Find all real numbers $a$ such that exists function $\mathbb {R} \rightarrow \mathbb {R} $ satisfying the following conditions: 1) $f(f(x)) =xf(x)-ax$ for all real $x$ 2) $f$ is not constant 3) $f$ takes the value $a$

2020 MOAA, TO4

Tags: algebra , team
Over all real numbers $x$, let $k$ be the minimum possible value of the expression $$\sqrt{x^2 + 9} +\sqrt{x^2 - 6x + 45}.$$ Determine $k^2$.

1992 USAMO, 5

Let $\, P(z) \,$ be a polynomial with complex coefficients which is of degree $\, 1992 \,$ and has distinct zeros. Prove that there exist complex numbers $\, a_1, a_2, \ldots, a_{1992} \,$ such that $\, P(z) \,$ divides the polynomial \[ \left( \cdots \left( (z-a_1)^2 - a_2 \right)^2 \cdots - a_{1991} \right)^2 - a_{1992}. \]

2019 Middle European Mathematical Olympiad, 1

Determine the smallest and the greatest possible values of the expression $$\left( \frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\right)\left( \frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)$$ provided $a,b$ and $c$ are non-negative real numbers satisfying $ab+bc+ca=1$. [i]Proposed by Walther Janous, Austria [/i]