This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2008 Indonesia Juniors, day 1

p1. Circle $M$ is the incircle of ABC, while circle $N$ is the incircle of $ACD$. Circles $M$ and $N$ are tangent at point $E$. If side length $AD = x$ cm, $AB = y$ cm, $BC = z$ cm, find the length of side $DC$ (in terms of $x, y$, and $z$). [img]https://cdn.artofproblemsolving.com/attachments/d/5/66ddc8a27e20e5a3b27ab24ff1eba3abee49a6.png[/img] p2. The address of the house on Jalan Bahagia will be numbered with the following rules: $\bullet$ One side of the road is numbered with consecutive even numbers starting from number $2$. $\bullet$ The opposite side is numbered with an odd number starting from number $3$. $\bullet$ In a row of even numbered houses, there is some land vacant house that has not been built. $\bullet$ The first house numbered $2$ has a neighbor next door. When the RT management ordered the numbers of the house, it is known that the cost of making each digit is $12.000$ Rp. For that, the total cost to be incurred is $1.020.000$ Rp. It is also known that the cost of all even-sided house numbers is $132.000$ Rp. cheaper than the odd side. When the land is empty later a house has been built, the number of houses on the even and odd sides is the same. Determine the number of houses that are now on Jalan Bahagia . p3. Given the following problem: Each element in the set $A = \{10, 11, 12,...,2008\}$ multiplied by each element in the set $B = \{21, 22, 23,...,99\}$. The results are then added together to give value of $X$. Determine the value of $X$. Someone answers the question by multiplying $2016991$ with $4740$. How can you explain that how does that person make sense? p4. Let $P$ be the set of all positive integers between $0$ and $2008$ which can be expressed as the sum of two or more consecutive positive integers . (For example: $11 = 5 + 6$, $90 = 29 + 30 + 31$, $100 = 18 + 19 +20 + 21 + 22$. So $11, 90, 100$ are some members of $P$.) Find the sum of of all members of $P$. p5. A four-digit number will be formed from the numbers at $0, 1, 2, 3, 4, 5$ provided that the numbers in the number are not repeated, and the number formed is a multiple of $3$. What is the probability that the number formed has a value less than $3000$?

2016 Japan MO Preliminary, 7

Let $a, b, c, d$ be real numbers satisfying the system of equation $\[(a+b)(c+d)=2 \\ (a+c)(b+d)=3 \\ (a+d)(b+c)=4\]$ Find the minimum value of $a^2+b^2+c^2+d^2$.

2022 ISI Entrance Examination, 8

Find the minimum value of $$\big|\sin x+\cos x+\tan x+\cot x+\sec x+\operatorname{cosec}x\big|$$ for real numbers $x$ not multiple of $\frac{\pi}{2}$.

2025 Ukraine National Mathematical Olympiad, 10.2

Given $12$ segments, it is known that they can be divided into $4$ groups of $3$ segments each in such a way that a triangle can be formed from the segments of each triplet. Is it always possible to divide these $12$ segments into $3$ groups of $4$ segments each in such a way that a quadrilateral can be formed from the segments of each quartet? [i]Proposed by Mykhailo Shtandenko[/i]

2009 Mid-Michigan MO, 7-9

[b]p1.[/b] Arrange the whole numbers $1$ through $15$ in a row so that the sum of any two adjacent numbers is a perfect square. In how many ways this can be done? [b]p2.[/b] Prove that if $p$ and $q$ are prime numbers which are greater than $3$ then $p^2 - q^2$ is divisible by $24$. [b]p3.[/b] If a polyleg has even number of legs he always tells truth. If he has an odd number of legs he always lies. Once a green polyleg told a dark-blue polyleg ”- I have $8$ legs. And you have only $6$ legs!” The offended dark-blue polyleg replied ”-It is me who has $8$ legs, and you have only $7$ legs!” A violet polyleg added ”-The dark-blue polyleg indeed has $8$ legs. But I have $9$ legs!” Then a stripped polyleg started ”None of you has $8$ legs. Only I have $8$ legs!” Which polyleg has exactly $8$ legs? [b][b]p4.[/b][/b] There is a small puncture (a point) in the wall (as shown in the figure below to the right). The housekeeper has a small flag of the following form (see the figure left). Show on the figure all the points of the wall where you can hammer in a nail such that if you hang the flag it will close up the puncture. [img]https://cdn.artofproblemsolving.com/attachments/a/f/8bb55a3fdfb0aff8e62bc4cf20a2d3436f5d90.png[/img] [b]p5.[/b] Assume $ a, b, c$ are odd integers. Show that the quadratic equation $ax^2 + bx + c = 0$ has no rational solutions. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Bosnia And Herzegovina - Regional Olympiad, 2

Let $a$, $b$ and $c$ be positive real numbers such that $abc=1$. Prove the inequality: $$\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \leq \frac{a^2+b^2+c^2}{2}$$

2023 South East Mathematical Olympiad, 8

Let $p(x)$ be an $n$-degree $(n \ge 2)$ polynomial with integer coefficients. If there are infinitely many positive integers $m$, such that $p(m)$ at most $n -1$ different prime factors $f$, prove that $p(x)$ has at most $n-1$ different rational roots . [color=#f00]a help in translation is welcome[/color]

2009 Indonesia TST, 3

Tags: algebra
Find all triples $ (x,y,z)$ of positive real numbers which satisfy $ 2x^3 \equal{} 2y(x^2 \plus{} 1) \minus{} (z^2 \plus{} 1)$; $ 2y^4 \equal{} 3z(y^2 \plus{} 1) \minus{} 2(x^2 \plus{} 1)$; $ 2z^5 \equal{} 4x(z^2 \plus{} 1) \minus{} 3(y^2 \plus{} 1)$.

1995 Israel Mathematical Olympiad, 8

A real number $\alpha$ is given. Find all functions $f : R^+ \to R^+$ satisfying $\alpha x^2f\left(\frac{1}{x}\right) +f(x) =\frac{x}{x+1}$ for all $x > 0$.

2015 Switzerland - Final Round, 3

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, such that for arbitrary $x,y \in \mathbb{R}$: \[ (y+1)f(x)+f(xf(y)+f(x+y))=y.\]

1976 Miklós Schweitzer, 7

Let $ f_1,f_2,\dots,f_n$ be regular functions on a domain of the complex plane, linearly independent over the complex field. Prove that the functions $ f_i\overline{f}_k, \;1 \leq i,k \leq n$, are also linearly independent. [i]L. Lempert[/i]

2004 Iran MO (2nd round), 2

Tags: algebra , function
Let $f:\mathbb{R}^{\geq 0}\to\mathbb{R}$ be a function such that $f(x)-3x$ and $f(x)-x^3$ are ascendant functions. Prove that $f(x)-x^2-x$ is an ascendant function, too. (We call the function $g(x)$ ascendant, when for every $x\leq{y}$ we have $g(x)\leq{g(y)}$.)

2011 Romania Team Selection Test, 1

Tags: function , algebra
Determine all real-valued functions $f$ on the set of real numbers satisfying \[2f(x)=f(x+y)+f(x+2y)\] for all real numbers $x$ and all non-negative real numbers $y$.

2012 Israel National Olympiad, 3

Let $a,b,c$ be real numbers such that $a^3(b+c)+b^3(a+c)+c^3(a+b)=0$. Prove that $ab+bc+ca\leq0$.

2016 BMT Spring, 7

Tags: algebra
Define $ P(\tau ) = (\tau + 1)^3$ . If $x + y = 0$, what is the minimum possible value of $P(x) + P(y)$?

1997 Vietnam Team Selection Test, 2

Tags: logarithm , algebra
Find all pairs of positive real numbers $ (a, b)$ such that for every $ n \in\mathbb{N}^*$ and every real root $ x_n$ of the equation $ 4n^2x \equal{} \log_2(2n^2x \plus{} 1)$ we always have $ a^{x_n} \plus{} b^{x_n} \ge 2 \plus{} 3x_n$.

2024 Vietnam National Olympiad, 5

For each polynomial $P(x)$, define $$P_1(x)=P(x), \forall x \in \mathbb{R},$$ $$P_2(x)=P(P_1(x)), \forall x \in \mathbb{R},$$ $$...$$ $$P_{2024}(x)=P(P_{2023}(x)), \forall x \in \mathbb{R}.$$ Let $a>2$ be a real number. Is there a polynomial $P$ with real coefficients such that for all $t \in (-a, a)$, the equation $P_{2024}(x)=t$ has $2^{2024}$ distinct real roots?

2018 Canadian Mathematical Olympiad Qualification, 1

Determine all real solutions to the following system of equations: $$ \begin{cases} y = 4x^3 + 12x^2 + 12x + 3\\ x = 4y^3 + 12y^2 + 12y + 3. \end{cases} $$

2022 USEMO, 2

Tags: function , algebra
A function $\psi \colon {\mathbb Z} \to {\mathbb Z}$ is said to be [i]zero-requiem[/i] if for any positive integer $n$ and any integers $a_1$, $\ldots$, $a_n$ (not necessarily distinct), the sums $a_1 + a_2 + \dots + a_n$ and $\psi(a_1) + \psi(a_2) + \dots + \psi(a_n)$ are not both zero. Let $f$ and $g$ be two zero-requiem functions for which $f \circ g$ and $g \circ f$ are both the identity function (that is, $f$ and $g$ are mutually inverse bijections). Given that $f+g$ is [i]not[/i] a zero-requiem function, prove that $f \circ f$ and $g \circ g$ are both zero-requiem. [i]Sutanay Bhattacharya[/i]

2020 HMNT (HMMO), 1

For how many positive integers $n \le 1000$ does the equation in real numbers $x^{\lfloor x \rfloor } = n$ have a positive solution for $x$?

II Soros Olympiad 1995 - 96 (Russia), 11.4

Consider the graph of the function $y = (1 -x^2)^3$. Find the set of points $M(x,y)$ through which you can draw at least $6$ lines touching this graph.

2019 India IMO Training Camp, P1

Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$

2000 Federal Competition For Advanced Students, Part 2, 3

Tags: function , algebra
Find all functions $f : \mathbb R \to \mathbb R$ such that for all reals $x, y, z$ it holds that \[f(x + f(y + z)) + f(f(x + y) + z) = 2y.\]

2022 AMC 12/AHSME, 2

Tags: algebra
The sum of three numbers is $96$. The first number is $6$ times the third number, and the third number is $40$ less than the second number. What is the absolute value of the difference between the first and second numbers? $\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } 5$

1992 APMO, 5

Find a sequence of maximal length consisting of non-zero integers in which the sum of any seven consecutive terms is positive and that of any eleven consecutive terms is negative.