This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2022 Paraguay Mathematical Olympiad, 4

Karina, Leticia and Milena paint glass bottles and sell them as decoration. they had $100$ bottles, and they decorated them in such a way that each bottle was painted by a single person. After the finished, they put all the bottles on a table. In an oversight one of them pushed the table, falling and breaking exactly $\frac18$ of the bottles that Karina painted, $\frac13$ of the bottles that Milena, painted and $\frac16$ of the bottles that Leticia painted. In total, $82$ painted bottles remained unbroken. Knowing that the number of broken bottles that Milena had painted is equal to the average of the amounts of broken bottles painted by Karina and Leticia, how many bottles did each of them paint?

2021 Romanian Master of Mathematics Shortlist, A4

Let $f: \mathbb{R} \to \mathbb{R}$ be a non-decreasing function such that $f(y) - f(x) < y - x$ for all real numbers $x$ and $y > x$. The sequence $u_1,u_2,\ldots$ of real numbers is such that $u_{n+2} = f(u_{n+1}) - f(u_n)$ for all $n\geq 1$. Prove that for any $\varepsilon > 0$ there exists a positive integer $N$ such that $|u_n| < \varepsilon$ for all $n\geq N$.

1941 Moscow Mathematical Olympiad, 079

Solve the equation: $|x + 1| - |x| + 3|x - 1| - 2|x - 2| = x + 2$.

MMPC Part II 1958 - 95, 1974

[b]p1.[/b] Let $S$ be the sum of the $99$ terms: $$(\sqrt1 + \sqrt2)^{-1},(\sqrt2 + \sqrt3)^{-1}, (\sqrt3 + \sqrt4)^{-1},..., (\sqrt{99} + \sqrt{100})^{-1}.$$ Prove that $S$ is an integer. [b]p2.[/b] Determine all pairs of positive integers $x$ and $y$ for which $N=x^4+4y^4$ is a prime. (Your work should indicate why no other solutions are possible.) [b]p3.[/b] Let $w,x,y,z$ be arbitrary positive real numbers. Prove each inequality: (a) $xy \le \left(\frac{x+y}{2}\right)^2$ (b) $wxyz \le \left(\frac{w+x+y+z}{4}\right)^4$ (c) $xyz \le \left(\frac{x+y+z}{3}\right)^3$ [b]p4.[/b] Twelve points $P_1$,$P_2$, $...$,$P_{12}$ are equally spaaed on a circle, as shown. Prove: that the chords $\overline{P_1P_9}$, $\overline{P_4P_{12}}$ and $\overline{P_2P_{11}}$ have a point in common. [img]https://cdn.artofproblemsolving.com/attachments/d/4/2eb343fd1f9238ebcc6137f7c84a5f621eb277.png[/img] [b]p5.[/b] Two very busy men, $A$ and $B$, who wish to confer, agree to appear at a designated place on a certain day, but no earlier than noon and no later than $12:15$ p.m. If necessary, $A$ will wait $6$ minutes for $B$ to arrive, while $B$ will wait $9$ minutes for $A$ to arrive but neither can stay past $12:15$ p.m. Express as a percent their chance of meeting. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 Estonia Team Selection Test, 4

Prove that for any positive integer $n\ge $, $2 \cdot \sqrt3 \cdot \sqrt[3]{4} ...\sqrt[n-1]{n} > n$

2023 Federal Competition For Advanced Students, P1, 1

Let $a, b, c, d$ be positive reals strictly smaller than $1$, such that $a+b+c+d=2$. Prove that $$\sqrt{(1-a)(1-b)(1-c)(1-d)} \leq \frac{ac+bd}{2}. $$

2012 Centers of Excellency of Suceava, 1

Function ${{f\colon \mathbb[0, +\infty)}\to\mathbb[0, +\infty)}$ satisfies the condition $f(x)+f(y){\ge}2f(x+y)$ for all $x,y{\ge}0$. Prove that $f(x)+f(y)+f(z){\ge}3f(x+y+z)$ for all $x,y,z{\ge}0$. Mathematical induction? __________________________________ Azerbaijan Land of the Fire :lol:

2015 Tournament of Towns, 3

Each coefficient of a polynomial is an integer with absolute value not exceeding $2015$. Prove that every positive root of this polynomial exceeds $\frac{1}{2016}$. [i]($6$ points)[/i]

2008 Serbia National Math Olympiad, 5

The sequence $ (a_n)_{n\ge 1}$ is defined by $ a_1 \equal{} 3$, $ a_2 \equal{} 11$ and $ a_n \equal{} 4a_{n\minus{}1}\minus{}a_{n\minus{}2}$, for $ n \ge 3$. Prove that each term of this sequence is of the form $ a^2 \plus{} 2b^2$ for some natural numbers $ a$ and $ b$.

2014 Contests, 2

Tags: algebra
Let $k\ge 2$, $n\ge 1$, $a_1, a_2,\dots, a_k$ and $b_1, b_2, \dots, b_n$ be integers such that $1<a_1<a_2<\dots <a_k<b_1<b_2<\dots <b_n$. Prove that if $a_1+a_2+\dots +a_k>b_1+b_2+\dots + b_n$, then $a_1\cdot a_2\cdot \ldots \cdot a_k>b_1\cdot b_2 \cdot \ldots \cdot b_n$.

1987 Romania Team Selection Test, 11

Let $P(X,Y)=X^2+2aXY+Y^2$ be a real polynomial where $|a|\geq 1$. For a given positive integer $n$, $n\geq 2$ consider the system of equations: \[ P(x_1,x_2) = P(x_2,x_3) = \ldots = P(x_{n-1},x_n) = P(x_n,x_1) = 0 . \] We call two solutions $(x_1,x_2,\ldots,x_n)$ and $(y_1,y_2,\ldots,y_n)$ of the system to be equivalent if there exists a real number $\lambda \neq 0$, $x_1=\lambda y_1$, $\ldots$, $x_n= \lambda y_n$. How many nonequivalent solutions does the system have? [i]Mircea Becheanu[/i]

2021/2022 Tournament of Towns, P4

Tags: algebra
What is the minimum $k{}$ for which among any three nonzero real numbers there are two numbers $a{}$ and $b{}$ such that either $|a-b|\leqslant k$ or $|1/a-1/b|\leqslant k$? [i]Maxim Didin[/i]

2005 Putnam, B3

Find all differentiable functions $f: (0,\infty)\mapsto (0,\infty)$ for which there is a positive real number $a$ such that \[ f'\left(\frac ax\right)=\frac x{f(x)} \] for all $x>0.$

2022 BMT, 2

Tags: easy , algebra
The equation $$4^x -5 \cdot 2^{x+1} +16 = 0$$ has two integer solutions for $x.$ Find their sum.

2008 China National Olympiad, 3

Find all triples $(p,q,n)$ that satisfy \[q^{n+2} \equiv 3^{n+2} (\mod p^n) ,\quad p^{n+2} \equiv 3^{n+2} (\mod q^n)\] where $p,q$ are odd primes and $n$ is an positive integer.

2018 Junior Balkan Team Selection Tests - Moldova, 4

Tags: algebra
Prove that $A=10^{n^3-n+2}$ can be written as a sum of four perfect cubes.

2008 Argentina National Olympiad, 4

Tags: algebra
Find all real numbers $ x$ which satisfy the following equation: $ [2x]\plus{}[3x]\plus{}[7x]\equal{}2008$. Note: $ [x]$ means the greatest integer less or equal than $ x$.

1997 Brazil Team Selection Test, Problem 4

Prove that it is impossible to arrange the numbers $1,2,\ldots,1997$ around a circle in such a way that, if $x$ and $y$ are any two neighboring numbers, then $499\le|x-y|\le997$.

2022 Greece JBMO TST, 3

The real numbers $x,y,z$ are such that $x+y+z=4$ and $0 \le x,y,z \le 2$. Find the minimun value of the expression $$A=\sqrt{2+x}+\sqrt{2+y}+\sqrt{2+z}+\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}$$.

1962 Leningrad Math Olympiad, grade 8

[b]8.1[/b] Four circles are placed on planes so that each one touches the other two externally. Prove that the points of tangency lie on one circle. [img]https://cdn.artofproblemsolving.com/attachments/9/8/883a82fb568954b09a4499a955372e2492dbb8.png[/img] [b]8.2[/b]. Let the integers $a$ and $b$ be represented as $x^2-5y^2$, where $x$ and $y$ are integer numbers. Prove that the number $ab$ can also be presented in this form. [b]8.3[/b] Solve the equation $x(x + d)(x + 2d)(x + 3d) = a$. [b]8.4 / 9.1[/b] Let $a+b+c=1$, $m+n+p=1 $. Prove that $$-1 \le am + bn + cp \le 1 $$ [b]8.5[/b] Inscribe a triangle with the largest area in a semicircle. [b]8.6[/b] Three circles of the same radius intersect at one point. Prove that the other three points intersections lie on a circle of the same radius. [img]https://cdn.artofproblemsolving.com/attachments/4/7/014952f2dcf0349d54b07230e45a42c242a49d.png[/img] [b]8.7[/b] Find the circle of smallest radius that contains a given triangle. [b]8.8 / 9.2[/b] Given a polynomial $$x^{2n} +a_1x^{2n-2} + a_2x^{2n-4} + ... + a_{n-1}x^2 + a_n,$$ which is divisible by $ x-1$. Prove that it is divisible by $x^2-1$. [b]8.9[/b] Prove that for any prime number $p$ other than $2$ and from $5$, there is a natural number $k$ such that only ones are involved in the decimal notation of the number $pk$.. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983459_1962_leningrad_math_olympiad]here[/url].

2011 Junior Balkan Team Selection Tests - Romania, 3

Let n be a positive integer and let $x_1, x_2,...,x_n$ and $y_1, y_2,...,y_n$ be real numbers. Prove that there exists a number $i, i = 1, 2,...,n$, such that $$\sum_{j=1}^n |x_i - x_j | \le \sum_{j=1}^n |x_i - y_j | $$

2002 All-Russian Olympiad Regional Round, 9.2

A monic quadratic polynomial $f$ with integer coefficients attains prime values at three consecutive integer points.show that it attains a prime value at some other integer point as well.

2012 Kyoto University Entry Examination, 5

Find the domain of the pairs of positive real numbers $(a,\ b)$ such that there is a $\theta\ (0<\theta \leq \pi)$ such that $\cos a\theta =\cos b\theta$, then draw the domain on the coordinate plane. 30 points

2004 Kurschak Competition, 2

Find the smallest positive integer $n\neq 2004$ for which there exists a polynomial $f\in\mathbb{Z}[x]$ such that the equation $f(x)=2004$ has at least one, and the equation $f(x)=n$ has at least $2004$ different integer solutions.

2016 Japan Mathematical Olympiad Preliminary, 7

Let $a, b, c, d$ be real numbers satisfying the system of equation $\[(a+b)(c+d)=2 \\ (a+c)(b+d)=3 \\ (a+d)(b+c)=4\]$ Find the minimum value of $a^2+b^2+c^2+d^2$.