This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2013 ELMO Shortlist, 2

For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in $\mathbb{R}^3$ so that for every integer $n \ge 1$, the sum of the $n^3$ integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$? [i]Proposed by Andre Arslan[/i]

1995 Israel Mathematical Olympiad, 5

Let $n$ be an odd positive integer and let $x_1,x_2,...,x_n$ be n distinct real numbers that satisfy $|x_i -x_j| \le 1$ for $1 \le i < j \le n$. Prove that $$\sum_{i<j} |x_i -x_j| \le \left[\frac{n}{2} \right] \left(\left[\frac{n}{2} \right]-1 \right)$$

1989 AMC 12/AHSME, 28

Find the sum of the roots of $\tan^2x-9\tan x+1=0$ that are between $x=0$ and $x=2\pi$ radians. $ \textbf{(A)}\ \frac{\pi}{2} \qquad\textbf{(B)}\ \pi \qquad\textbf{(C)}\ \frac{3\pi}{2} \qquad\textbf{(D)}\ 3\pi \qquad\textbf{(E)}\ 4\pi $

VI Soros Olympiad 1999 - 2000 (Russia), 9.1

Tags: algebra
A car and a motorcyclist left point $A$ in the direction of point $B$ at $10$ o'clock, and half an hour later a cyclist left point $B$ (in the direction of point A) and a pedestrian left (in the direction of point $A$) The car met the cyclist at $11$ o'clock hour and half an hour later overtook the pedestrian, and the motorcyclist overtook the pedestrian at $12:30$ p.m. At what time did the motorcyclist and the cyclist meet? (Speeds and directions of movement of ALL participants)

1990 IMO Longlists, 35

Prove that if $|x| < 1$, then \[ \frac{x}{(1-x)^2}+\frac{x^2}{(1+x^2)^2} + \frac{x^3}{(1-x^3)^2}+\cdots=\frac{x}{1-x}+\frac{2x^2}{1+x^2}+\frac{3x^3}{1-x^3}+\cdots\]

1995 IberoAmerican, 2

Let $n$ be a positive integer greater than 1. Determine all the collections of real numbers $x_1,\ x_2,\dots,\ x_n\geq1\mbox{ and }x_{n+1}\leq0$ such that the next two conditions hold: (i) $x_1^{\frac12}+x_2^{\frac32}+\cdots+x_n^{n-\frac12}= nx_{n+1}^\frac12$ (ii) $\frac{x_1+x_2+\cdots+x_n}{n}=x_{n+1}$

2013 CHMMC (Fall), 4

Tags: algebra
Let $$A =\frac12 +\frac13 +\frac15 +\frac19,$$ $$B =\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 5}+\frac{1}{2 \cdot 9}+\frac{1}{3 \cdot 5}+\frac{1}{3 \cdot 9} +\frac{1}{5 \cdot 9},$$ $$C =\frac{1}{2 \cdot 3 \cdot 5} + \frac{1}{2 \cdot 3 \cdot 9} + \frac{1}{2 \cdot 5 \cdot 9} +\frac{1}{3 \cdot 5 \cdot 9}.$$ Compute the value of $A + B + C$.

2021 Durer Math Competition Finals, 8

John found all real numbers $p$ such that in the polynomial $g(x) = (x -1)^2(p + 2x)^2$ , the quadratic term has coefficient $2021$. What is the sum of all of these values $p$?

1975 Czech and Slovak Olympiad III A, 6

Let $\mathbf M\subseteq\mathbb R^2$ be a set with the following properties: 1) there is a pair $(a,b)\in\mathbf M$ such that $ab(a-b)\neq0,$ 2) if $\left(x_1,y_1\right),\left(x_2,y_2\right)\in\mathbf M$ and $c\in\mathbb R$ then also \[\left(cx_1,cy_1\right),\left(x_1+x_2,y_1+y_2\right),\left(x_1x_2,y_1y_2\right)\in\mathbf M.\] Show that in fact \[\mathbf M=\mathbb R^2.\]

2021 Malaysia IMONST 1, 18

Tags: equation , algebra
How many real numbers $x$ are solutions to the equation $|x - 2| - 4 =\frac{1}{|x - 3|}$ ?

1957 Poland - Second Round, 4

Prove that if $ a > 0 $, $ b > 0 $, $ c > 0 $, then $$ \frac{a}{b + c} + \frac{b}{c+ a} + \frac{c}{a+b} \geq \frac{3}{2}.$$

1993 Kurschak Competition, 1

Let $a$ and $b$ be positive integers. Prove that the numbers $an^2+b$ and $a(n+1)^2+b$ are both perfect squares only for finitely many integers $n$.

EMCC Guts Rounds, 2011

[u]Round 1[/u] [b]p1.[/b] In order to make good salad dressing, Bob needs a $0.9\%$ salt solution. If soy sauce is $15\%$ salt, how much water, in mL, does Bob need to add to $3$ mL of pure soy sauce in order to have a good salad dressing? [b]p2.[/b] Alex the Geologist is buying a canteen before he ventures into the desert. The original cost of a canteen is $\$20$, but Alex has two coupons. One coupon is $\$3$ off and the other is $10\%$ off the entire remaining cost. Alex can use the coupons in any order. What is the least amount of money he could pay for the canteen? [b]p3.[/b] Steve and Yooni have six distinct teddy bears to split between them, including exactly $1$ blue teddy bear and $1$ green teddy bear. How many ways are there for the two to divide the teddy bears, if Steve gets the blue teddy bear and Yooni gets the green teddy bear? (The two do not necessarily have to get the same number of teddy bears, but each teddy bear must go to a person.) [u]Round 2[/u] [b]p4.[/b] In the currency of Mathamania, $5$ wampas are equal to $3$ kabobs and $10$ kabobs are equal to $2$ jambas. How many jambas are equal to twenty-five wampas? [b]p5.[/b] A sphere has a volume of $81\pi$. A new sphere with the same center is constructed with a radius that is $\frac13$ the radius of the original sphere. Find the volume, in terms of $\pi$, of the region between the two spheres. [b]p6.[/b] A frog is located at the origin. It makes four hops, each of which moves it either $1$ unit to the right or $1$ unit to the left. If it also ends at the origin, how many $4$-hop paths can it take? [u]Round 3[/u] [b]p7.[/b] Nick multiplies two consecutive positive integers to get $4^5 - 2^5$ . What is the smaller of the two numbers? [b]p8.[/b] In rectangle $ABCD$, $E$ is a point on segment $CD$ such that $\angle EBC = 30^o$ and $\angle AEB = 80^o$. Find $\angle EAB$, in degrees. [b]p9.[/b] Mary’s secret garden contains clones of Homer Simpson and WALL-E. A WALL-E clone has $4$ legs. Meanwhile, Homer Simpson clones are human and therefore have $2$ legs each. A Homer Simpson clone always has $5$ donuts, while a WALL-E clone has $2$. In Mary’s secret garden, there are $184$ donuts and $128$ legs. How many WALL-E clones are there? [u]Round 4[/u] [b]p10.[/b] Including Richie, there are $6$ students in a math club. Each day, Richie hangs out with a different group of club mates, each of whom gives him a dollar when he hangs out with them. How many dollars will Richie have by the time he has hung out with every possible group of club mates? [b]p11.[/b] There are seven boxes in a line: three empty, three holding $\$10$ each, and one holding the jackpot of $\$1, 000, 000$. From the left to the right, the boxes are numbered $1, 2, 3, 4, 5, 6$ and $7$, in that order. You are told the following: $\bullet$ No two adjacent boxes hold the same contents. $\bullet$ Box $4$ is empty. $\bullet$ There is one more $\$10$ prize to the right of the jackpot than there is to the left. Which box holds the jackpot? [b]p12.[/b] Let $a$ and $b$ be real numbers such that $a + b = 8$. Let $c$ be the minimum possible value of $x^2 + ax + b$ over all real numbers $x$. Find the maximum possible value of $c$ over all such $a$ and $b$. [u]Round 5[/u] [b]p13.[/b] Let $ABCD$ be a rectangle with $AB = 10$ and $BC = 12$. Let M be the midpoint of $CD$, and $P$ be a point on $BM$ such that $BP = BC$. Find the area of $ABPD$. [b]p14.[/b] The number $19$ has the following properties: $\bullet$ It is a $2$-digit positive integer. $\bullet$ It is the two leading digits of a $4$-digit perfect square, because $1936 = 44^2$. How many numbers, including $19$, satisfy these two conditions? [b]p15.[/b] In a $3 \times 3$ grid, each unit square is colored either black or white. A coloring is considered “nice” if there is at most one white square in each row or column. What is the total number of nice colorings? Rotations and reflections of a coloring are considered distinct. (For example, in the three squares shown below, only the rightmost one has a nice coloring. [img]https://cdn.artofproblemsolving.com/attachments/e/4/e6932c822bec77aa0b07c98d1789e58416b912.png[/img] PS. You should use hide for answers. Rest rounds have been posted [url=https://artofproblemsolving.com/community/c4h2786958p24498425]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1990 IMO Shortlist, 24

Let $ w, x, y, z$ are non-negative reals such that $ wx \plus{} xy \plus{} yz \plus{} zw \equal{} 1$. Show that $ \frac {w^3}{x \plus{} y \plus{} z} \plus{} \frac {x^3}{w \plus{} y \plus{} z} \plus{} \frac {y^3}{w \plus{} x \plus{} z} \plus{} \frac {z^3}{w \plus{} x \plus{} y}\geq \frac {1}{3}$.

2003 Moldova National Olympiad, 10.8

Tags: logarithm , algebra
Find all integers n for which number $ \log_{2n\minus{}1}(n^2\plus{}2)$ is rational.

2003 USA Team Selection Test, 4

Let $\mathbb{N}$ denote the set of positive integers. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that \[ f(m+n)f(m-n) = f(m^2) \] for $m,n \in \mathbb{N}$.

2024/2025 TOURNAMENT OF TOWNS, P7

Tags: algebra
Two strictly ascending sequences of positive numbers are given. In each sequence, each number starting from the third one is the sum of two preceding ones. It is known that each of the sequences contains at least one number not present in the other sequence. What is the maximum quantity of numbers common for these two sequences? Boris Frenkin

2010 Baltic Way, 4

Find all polynomials $P(x)$ with real coefficients such that \[(x-2010)P(x+67)=xP(x) \] for every integer $x$.

2014 Contests, 2

Does there exist a function $f: \mathbb R \to \mathbb R $ satisfying the following conditions: (i) for each real $y$ there is a real $x$ such that $f(x)=y$ , and (ii) $f(f(x)) = (x - 1)f(x) + 2$ for all real $x$ ? [i]Proposed by Igor I. Voronovich, Belarus[/i]

2012 AIME Problems, 14

Complex numbers $a$, $b$ and $c$ are the zeros of a polynomial $P(z) = z^3+qz+r$, and $|a|^2+|b|^2+|c|^2=250$. The points corresponding to $a$, $b$, and $c$ in the complex plane are the vertices of a right triangle with hypotenuse $h$. Find $h^2$.

2021 Vietnam National Olympiad, 1

Tags: algebra
Let $(x_n)$ define by $x_1\in \left(0;\dfrac{1}{2}\right)$ and $x_{n+1}=3x_n^2-2nx_n^3$ for all $n\ge 1$. a) Prove that $(x_n)$ convergence to $0$. b) For each $n\ge 1$, let $y_n=x_1+2x_2+\cdots+n x_n$. Prove that $(y_n)$ has a limit.

2016 Tournament Of Towns, 1

Tags: algebra , logarithm
On a blackboard the product $log_{( )}[ ]\times\dots\times log_{( )}[ ]$ is written (there are 50 logarithms in the product). Donald has $100$ cards: $[2], [3],\dots, [51]$ and $(52),\dots,(101)$. He is replacing each $()$ with some card of form $(x)$ and each $[]$ with some card of form $[y]$. Find the difference between largest and smallest values Donald can achieve.

2013 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] Goldilocks enters the home of the three bears – Papa Bear, Mama Bear, and Baby Bear. Each bear is wearing a different-colored shirt – red, green, or blue. All the bears look the same to Goldilocks, so she cannot otherwise tell them apart. The bears in the red and blue shirts each make one true statement and one false statement. The bear in the red shirt says: “I'm Blue's dad. I'm Green's daughter.” The bear in the blue shirt says: “Red and Green are of opposite gender. Red and Green are my parents.” Help Goldilocks find out which bear is wearing which shirt. [b]p2.[/b] The University of Washington is holding a talent competition. The competition has five contests: math, physics, chemistry, biology, and ballroom dancing. Any student can enter into any number of the contests but only once for each one. For example, a student may participate in math, biology, and ballroom. It turned out that each student participated in an odd number of contests. Also, each contest had an odd number of participants. Was the total number of contestants odd or even? [b]p3.[/b] The $99$ greatest scientists of Mars and Venus are seated evenly around a circular table. If any scientist sees two colleagues from her own planet sitting an equal number of seats to her left and right, she waves to them. For example, if you are from Mars and the scientists sitting two seats to your left and right are also from Mars, you will wave to them. Prove that at least one of the $99$ scientists will be waving, no matter how they are seated around the table. [b]p4.[/b] One hundred boys participated in a tennis tournament in which every player played each other player exactly once and there were no ties. Prove that after the tournament, it is possible for the boys to line up for pizza so that each boy defeated the boy standing right behind him in line. [b]p5.[/b] To celebrate space exploration, the Science Fiction Museum is going to read Star Wars and Star Trek stories for $24$ hours straight. A different story will be read each hour for a total of $12$ Star Wars stories and $12$ Star Trek stories. George and Gene want to listen to exactly $6$ Star Wars and $6$ Star Trek stories. Show that no matter how the readings are scheduled, the friends can find a block of $12$ consecutive hours to listen to the stories together. [u]Round 2[/u] [b]p6.[/b] $2013$ people attended Cinderella's ball. Some of the guests were friends with each other. At midnight, the guests started turning into mice. After the first minute, everyone who had no friends at the ball turned into a mouse. After the second minute, everyone who had exactly one friend among the remaining people turned into a mouse. After the third minute, everyone who had two human friends left in the room turned into a mouse, and so on. What is the maximal number of people that could have been left at the ball after $2013$ minutes? [b]p7.[/b] Bill and Charlie are playing a game on an infinite strip of graph paper. On Bill’s turn, he marks two empty squares of his choice (not necessarily adjacent) with crosses. Charlie, on his turn, can erase any number of crosses, as long as they are all adjacent to each other. Bill wants to create a line of $2013$ crosses in a row. Can Charlie stop him? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Contests, 3

prove that for each natural number $n$ there exist a polynomial with degree $2n+1$ with coefficients in $\mathbb{Q}[x]$ such that it has exactly $2$ complex zeros and it's irreducible in $\mathbb{Q}[x]$.(20 points)

1949-56 Chisinau City MO, 40

Solve the system of equations: $$\begin{cases} \log_{2} x + \log_{4} y + \log_{4} z =2 \\ \log_{3} y + \log_{9} z + \log_{9} x =2 \\ \log_{4} z + \log_{16} x + \log_{16} y =2\end{cases}$$