This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1975 AMC 12/AHSME, 5

The polynomial $ (x\plus{}y)^9$ is expanded in decreasing powers of $ x$. The second and third terms have equal values when evaluated at $ x\equal{}p$ and $ y\equal{}q$, where $ p$ and $ q$ are positive numbers whose sum is one. What is the value of $ p$? $ \textbf{(A)}\ 1/5 \qquad \textbf{(B)}\ 4/5 \qquad \textbf{(C)}\ 1/4 \qquad \textbf{(D)}\ 3/4 \qquad \textbf{(E)}\ 8/9$

2023 Rioplatense Mathematical Olympiad, 6

Tags: algebra , function
Find all functions $f:\mathbb{Z} \rightarrow \mathbb{Z}$ such that $$f(x+f(y+1))+f(xy)=f(x+1)(f(y)+1)$$ for any $x,y$ integers.

2021 Hong Kong TST, 2

Tags: polynomial , algebra , root
Let $f(x)$ be a polynomial with rational coefficients, and let $\alpha$ be a real number. If \[\alpha^3-2019\alpha=(f(\alpha))^3-2019f(\alpha)=2021,\] prove that $(f^n(\alpha))^3-2019f^n(\alpha)=2021$ for any positive integer $n$. (Here, we define $f^n(x)=\underbrace{f(f(f\cdots f}_{n\text{ times}}(x)\cdots ))$.)

1991 AMC 12/AHSME, 20

The sum of all real $x$ such that $(2^{x} - 4)^{3} + (4^{x} - 2)^{3} = (4^{x} + 2^{x} - 6)^{3}$ is $ \textbf{(A)}\ 3/2\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 5/2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 7/2 $

2017 All-Russian Olympiad, 3

There are $n$ positive real numbers on the board $a_1,\ldots, a_n$. Someone wants to write $n$ real numbers $b_1,\ldots,b_n$,such that: $b_i\geq a_i$ If $b_i \geq b_j$ then $\frac{b_i}{b_j}$ is integer. Prove that it is possible to write such numbers with the condition $$b_1 \cdots b_n \leq 2^{\frac{n-1}{2}}a_1\cdots a_n.$$

2014 Iran MO (3rd Round), 5

Can an infinite set of natural numbers be found, such that for all triplets $(a,b,c)$ of it we have $abc + 1 $ perfect square? (20 points )

1989 China Team Selection Test, 3

Find the greatest $n$ such that $(z+1)^n = z^n + 1$ has all its non-zero roots in the unitary circumference, e.g. $(\alpha+1)^n = \alpha^n + 1, \alpha \neq 0$ implies $|\alpha| = 1.$

2014 India IMO Training Camp, 1

Let $x$ and $y$ be rational numbers, such that $x^{5}+y^{5}=2x^{2}y^{2}$. Prove that $1-xy$ is the square of a rational number.

1972 Swedish Mathematical Competition, 5

Show that \[ \int\limits_0^1 \frac{1}{(1+x)^n} dx > 1-\frac{1}{n} \] for all positive integers $n$.

2021 Mexico National Olympiad, 6

Determine all non empty sets $C_1, C_2, C_3, \cdots $ such that each one of them has a finite number of elements, all their elements are positive integers, and they satisfy the following property: For any positive integers $n$ and $m$, the number of elements in the set $C_n$ plus the number of elements in the set $C_m$ equals the sum of the elements in the set $C_{m + n}$. [i]Note:[/i] We denote $\lvert C_n \lvert$ the number of elements in the set $C_n$, and $S_k$ as the sum of the elements in the set $C_n$ so the problem's condition is that for every $n$ and $m$: \[\lvert C_n \lvert + \lvert C_m \lvert = S_{n + m}\] is satisfied.

2023 CUBRMC, Individual

[b]p1.[/b] Find the largest $4$ digit integer that is divisible by $2$ and $5$, but not $3$. [b]p2.[/b] The diagram below shows the eight vertices of a regular octagon of side length $2$. These vertices are connected to form a path consisting of four crossing line segments and four arcs of degree measure $270^o$. Compute the area of the shaded region. [center][img]https://cdn.artofproblemsolving.com/attachments/0/0/eec34d8d2439b48bb5cca583462c289287f7d0.png[/img][/center] [b]p3.[/b] Consider the numbers formed by writing full copies of $2023$ next to each other, like so: $$2023202320232023...$$ How many copies of $2023$ are next to each other in the smallest multiple of $11$ that can be written in this way? [b]p4.[/b] A positive integer $n$ with base-$10$ representation $n = a_1a_2 ...a_k$ is called [i]powerful [/i] if the digits $a_i$ are nonzero for all $1 \le i \le k$ and $$n = a^{a_1}_1 + a^{a_2}_2 +...+ a^{a_k}_k .$$ What is the unique four-digit positive integer that is [i]powerful[/i]? [b]p5.[/b] Six $(6)$ chess players, whose names are Alice, Bob, Crystal, Daniel, Esmeralda, and Felix, are sitting in a circle to discuss future content pieces for a show. However, due to fights they’ve had, Bob can’t sit beside Alice or Crystal, and Esmeralda can’t sit beside Felix. Determine the amount of arrangements the chess players can sit in. Two arrangements are the same if they only differ by a rotation. [b]p6.[/b] Given that the infinite sum $\frac{1}{1^4} +\frac{1}{2^4} +\frac{1}{3^4} +...$ is equal to $\frac{\pi^4}{90}$, compute the value of $$\dfrac{\dfrac{1}{1^4} +\dfrac{1}{2^4} +\dfrac{1}{3^4} +...}{\dfrac{1}{1^4} +\dfrac{1}{3^4} +\dfrac{1}{5^4} +...}$$ [b]p7.[/b] Triangle $ABC$ is equilateral. There are $3$ distinct points, $X$, $Y$ , $Z$ inside $\vartriangle ABC$ that each satisfy the property that the distances from the point to the three sides of the triangle are in ratio $1 : 1 : 2$ in some order. Find the ratio of the area of $\vartriangle ABC$ to that of $\vartriangle XY Z$. [b]p8.[/b] For a fixed prime $p$, a finite non-empty set $S = \{s_1,..., s_k\}$ of integers is $p$-[i]admissible [/i] if there exists an integer $n$ for which the product $$(s_1 + n)(s_2 + n) ... (s_k + n)$$ is not divisible by $p$. For example, $\{4, 6, 8\}$ is $2$-[i]admissible[/i] since $(4+1)(6+1)(8+1) = 315$ is not divisible by $2$. Find the size of the largest subset of $\{1, 2,... , 360\}$ that is two-,three-, and five-[i]admissible[/i]. [b]p9.[/b] Kwu keeps score while repeatedly rolling a fair $6$-sided die. On his first roll he records the number on the top of the die. For each roll, if the number was prime, the following roll is tripled and added to the score, and if the number was composite, the following roll is doubled and added to the score. Once Kwu rolls a $1$, he stops rolling. For example, if the first roll is $1$, he gets a score of $1$, and if he rolls the sequence $(3, 4, 1)$, he gets a score of $3 + 3 \cdot 4 + 2 \cdot 1 = 17$. What is his expected score? [b]p10.[/b] Let $\{a_1, a_2, a_3, ...\}$ be a geometric sequence with $a_1 = 4$ and $a_{2023} = \frac14$ . Let $f(x) = \frac{1}{7(1+x^2)}$. Find $$f(a_1) + f(a_2) + ... + f(a_{2023}).$$ [b]p11.[/b] Let $S$ be the set of quadratics $x^2 + ax + b$, with $a$ and $b$ real, that are factors of $x^{14} - 1$. Let $f(x)$ be the sum of the quadratics in $S$. Find $f(11)$. [b]p12.[/b] Find the largest integer $0 < n < 100$ such that $n^2 + 2n$ divides $4(n- 1)! + n + 4$. [b]p13.[/b] Let $\omega$ be a unit circle with center $O$ and radius $OQ$. Suppose $P$ is a point on the radius $OQ$ distinct from $Q$ such that there exists a unique chord of $\omega$ through $P$ whose midpoint when rotated $120^o$ counterclockwise about $Q$ lies on $\omega$. Find $OP$. [b]p14.[/b] A sequence of real numbers $\{a_i\}$ satisfies $$n \cdot a_1 + (n - 1) \cdot a_2 + (n - 2) \cdot a_3 + ... + 2 \cdot a_{n-1} + 1 \cdot a_n = 2023^n$$ for each integer $n \ge 1$. Find the value of $a_{2023}$. [b]p15.[/b] In $\vartriangle ABC$, let $\angle ABC = 90^o$ and let $I$ be its incenter. Let line $BI$ intersect $AC$ at point $D$, and let line $CI$ intersect $AB$ at point $E$. If $ID = IE = 1$, find $BI$. [b]p16.[/b] For a positive integer $n$, let $S_n$ be the set of permutations of the first $n$ positive integers. If $p = (a_1, ..., a_n) \in S_n$, then define the bijective function $\sigma_p : \{1,..., n\} \to \{1, ..., n\}$ such that $\sigma_p (i) = a_i$ for all integers $1 \le i \le n$. For any two permutations $p, q \in S_n$, we say $p$ and $q$ are friends if there exists a third permutation $r \in S_n$ such that for all integers $1 \le i \le n$, $$\sigma_p(\sigma_r (i)) = \sigma_r(\sigma_q(i)).$$ Find the number of friends, including itself, that the permutation $(4, 5, 6, 7, 8, 9, 10, 2, 3, 1)$ has in $S_{10}$. PS. You had better use hide for answers.

1986 Bulgaria National Olympiad, Problem 2

Let $f(x)$ be a quadratic polynomial with two real roots in the interval $[-1,1]$. Prove that if the maximum value of $|f(x)|$ in the interval $[-1,1]$ is equal to $1$, then the maximum value of $|f'(x)|$ in the interval $[-1,1]$ is not less than $1$.

2021 Kyiv City MO Round 1, 11.1

Tags: algebra
$N$ cossacks split into $3$ groups to discuss various issues with their friends. Cossack Taras moved from the first group to the second, cossack Andriy moved from the second to the third, and cossack Ostap - from the third group to the first. It turned out that the average height of the cossacks in the first group decreased by $8$ cm, while in the second and third groups it increased by $5$ cm and $8$ cm, respectively. What is $N$, if it is known that there were $9$ cossacks in the first group?

1966 IMO Longlists, 35

Let $ax^{3}+bx^{2}+cx+d$ be a polynomial with integer coefficients $a,$ $b,$ $c,$ $d$ such that $ad$ is an odd number and $bc$ is an even number. Prove that (at least) one root of the polynomial is irrational.

2011 Dutch IMO TST, 4

Determine all integers $n$ for which the polynomial $P(x) = 3x^3-nx-n-2$ can be written as the product of two non-constant polynomials with integer coeffcients.

2015 Cuba MO, 1

Let $f$ be a function of the positive reals in the positive reals, such that $$f(x) \cdot f(y) - f(xy) = \frac{x}{y} + \frac{y}{x} \ \ for \ \ all \ \ x, y > 0 .$$ (a) Find $f(1)$. (b) Find $f(x)$.

2024 Mathematical Talent Reward Programme, 6

Show that there exists an integer polynomial $P$ such that $P(1) = 2024$ and the set of prime divisors of {$P(2^k)$},$k=0,1,2,.....$ is an infinite set.

1959 AMC 12/AHSME, 16

The expression $\frac{x^2-3x+2}{x^2-5x+6}\div \frac{x^2-5x+4}{x^2-7x+12}$, when simplified is: $ \textbf{(A)}\ \frac{(x-1)(x-6)}{(x-3)(x-4)} \qquad\textbf{(B)}\ \frac{x+3}{x-3}\qquad\textbf{(C)}\ \frac{x+1}{x-1}\qquad\textbf{(D)}\ 1\qquad\textbf{(E)}\ 2$

2015 Hanoi Open Mathematics Competitions, 9

Let $a, b,c$ be positive numbers with $abc = 1$. Prove that $a^3 + b^3 + c^3 + 2[(ab)^3 + (bc)^3 + (ca)^3] \ge 3(a^2b + b^2c + c^2a)$.

2011-2012 SDML (High School), 13

The number of solutions, in real numbers $a$, $b$, and $c$, to the system of equations $$a+bc=1,$$$$b+ac=1,$$$$c+ab=1,$$ is $\text{(A) }3\qquad\text{(B) }4\qquad\text{(C) }5\qquad\text{(D) more than }5\text{, but finitely many}\qquad\text{(E) infinitely many}$

2011 Brazil Team Selection Test, 5

Tags: algebra , function
Determine all functions $f:\mathbb{R}\to\mathbb{R}$, where $\mathbb{R}$ is the set of all real numbers, satisfying the following two conditions: 1) There exists a real number $M$ such that for every real number $x,f(x)<M$ is satisfied. 2) For every pair of real numbers $x$ and $y$, \[ f(xf(y))+yf(x)=xf(y)+f(xy)\] is satisfied.

2016 India IMO Training Camp, 2

Tags: algebra
Suppose that a sequence $a_1,a_2,\ldots$ of positive real numbers satisfies \[a_{k+1}\geq\frac{ka_k}{a_k^2+(k-1)}\] for every positive integer $k$. Prove that $a_1+a_2+\ldots+a_n\geq n$ for every $n\geq2$.

1952 Moscow Mathematical Olympiad, 232

Prove that for any integer $a$ the polynomial $3x^{2n}+ax^n+2$ cannot be divided by $2x^{2m}+ax^m+3$ without a remainder.

2003 Tournament Of Towns, 2

$P(x)$ is a polynomial with real coefficients such that $P(a_1) = 0, P(a_{i+1}) = a_i$ ($i = 1, 2,\ldots$) where $\{a_i\}_{i=1,2,\ldots}$ is an infinite sequence of distinct natural numbers. Determine the possible values of degree of $P(x)$.

2007 Regional Competition For Advanced Students, 3

Let $ a$ be a positive real number and $ n$ a non-negative integer. Determine $ S\minus{}T$, where $ S\equal{} \sum_{k\equal{}\minus{}2n}^{2n\plus{}1} \frac{(k\minus{}1)^2}{a^{| \lfloor \frac{k}{2} \rfloor |}}$ and $ T\equal{} \sum_{k\equal{}\minus{}2n}^{2n\plus{}1} \frac{k^2}{a^{| \lfloor \frac{k}{2} \rfloor |}}$