This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1999 Canada National Olympiad, 5

Let $ x$, $ y$, and $ z$ be non-negative real numbers satisfying $ x \plus{} y \plus{} z \equal{} 1$. Show that \[ x^2 y \plus{} y^2 z \plus{} z^2 x \leq \frac {4}{27} \] and find when equality occurs.

2000 Iran MO (2nd round), 3

Tags: algebra
[i]Super number[/i] is a sequence of numbers $0,1,2,\ldots,9$ such that it has infinitely many digits at left. For example $\ldots 3030304$ is a [i]super number[/i]. Note that all of positive integers are [i]super numbers[/i], which have zeros before they're original digits (for example we can represent the number $4$ as $\ldots, 00004$). Like positive integers, we can add up and multiply [i]super numbers[/i]. For example: \[ \begin{array}{cc}& \ \ \ \ldots 3030304 \\ &+ \ldots4571378\\ &\overline{\qquad \qquad \qquad }\\ & \ \ \ \ldots 7601682 \end{array} \] And \[ \begin{array}{cl}& \ \ \ \ldots 3030304 \\ &\times \ldots4571378\\ &\overline{\qquad \qquad \qquad }\\ & \ \ \ \ldots 4242432 \\ & \ \ \ \ldots 212128 \\ & \ \ \ \ldots 90912 \\ & \ \ \ \ldots 0304 \\ & \ \ \ \ldots 128 \\ & \ \ \ \ldots 20 \\ & \ \ \ \ldots 6 \\ &\overline{\qquad \qquad \qquad } \\ & \ \ \ \ldots 5038912 \end{array}\] [b]a)[/b] Suppose that $A$ is a [i]super number[/i]. Prove that there exists a [i]super number[/i] $B$ such that $A+B=\stackrel{\leftarrow}{0}$ (Note: $\stackrel{\leftarrow}{0}$ means a super number that all of its digits are zero). [b]b)[/b] Find all [i]super numbers[/i] $A$ for which there exists a [i]super number[/i] $B$ such that $A \times B=\stackrel{\leftarrow}{0}1$ (Note: $\stackrel{\leftarrow}{0}1$ means the super number $\ldots 00001$). [b]c)[/b] Is this true that if $A \times B= \stackrel{\leftarrow}{0}$, then $A=\stackrel{\leftarrow}{0}$ or $B=\stackrel{\leftarrow}{0}$? Justify your answer.

2023 Indonesia MO, 2

Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that the following equation holds for every real $x,y$: \[ f(f(x) + y) = \lfloor x + f(f(y)) \rfloor. \] [b]Note:[/b] $\lfloor x \rfloor$ denotes the greatest integer not greater than $x$.

STEMS 2021 Math Cat B, Q4

Let $n$ be a fixed positive integer. - Show that there exist real polynomials $p_1, p_2, p_3, \cdots, p_k \in \mathbb{R}[x_1, \cdots, x_n]$ such that \[(x_1 + x_2 + \cdots + x_n)^2 + p_1(x_1, \cdots, x_n)^2 + p_2(x_1, \cdots, x_n)^2 + \cdots + p_k(x_1, \cdots, x_n)^2 = n(x_1^2 + x_2^2 + \cdots + x_n^2)\] - Find the least natural number $k$, depending on $n$, such that the above polynomials $p_1, p_2, \cdots, p_k$ exist.

2014 Flanders Math Olympiad, 4

Let $P(x)$ be a polynomial of degree $5$ and suppose that a and b are real numbers different from zero. Suppose the remainder when $P(x)$ is divided by $x^3 + ax + b$ equals the remainder when $P(x)$ is divided by $x^3 + ax^2 + b$. Then determine $a + b$.

1992 AMC 12/AHSME, 29

An "unfair" coin has a $2/3$ probability of turning up heads. If this coin is tossed $50$ times, what is the probability that the total number of heads is even? $ \textbf{(A)}\ 25\left(\frac{2}{3}\right)^{50}\qquad\textbf{(B)}\ \frac{1}{2}\left(1 - \frac{1}{3^{50}}\right)\qquad\textbf{(C)}\ \frac{1}{2}\qquad\textbf{(D)}\ \frac{1}{2}\left(1 + \frac{1}{3^{50}}\right)\qquad\textbf{(E)}\ \frac{2}{3} $

Math Hour Olympiad, Grades 5-7, 2011.67

[u]Round 1[/u] [b]p1.[/b] In a chemical lab there are three vials: one that can hold $1$ oz of fluid, another that can hold $2$ oz, and a third that can hold $3$ oz. The first is filled with grape juice, the second with sulfuric acid, and the third with water. There are also $3$ empty vials in the cupboard, also of sizes $1$ oz, $2$ oz, and $3$ oz. In order to save the world with grape-flavored acid, James Bond must make three full bottles, one of each size, filled with a mixture of all three liquids so that each bottle has the same ratio of juice to acid to water. How can he do this, considering he was silly enough not to bring any equipment? [b]p2.[/b] Twelve people, some are knights and some are knaves, are sitting around a table. Knaves always lie and knights always tell the truth. At some point they start up a conversation. The first person says, “There are no knights around this table.” The second says, “There is at most one knight at this table.” The third – “There are at most two knights at the table.” And so on until the $12$th says, “There are at most eleven knights at the table.” How many knights are at the table? Justify your answer. [b]p3.[/b] Aquaman has a barrel divided up into six sections, and he has placed a red herring in each. Aquaman can command any fish of his choice to either ‘jump counterclockwise to the next sector’ or ‘jump clockwise to the next sector.’ Using a sequence of exactly $30$ of these commands, can he relocate all the red herrings to one sector? If yes, show how. If no, explain why not. [img]https://cdn.artofproblemsolving.com/attachments/0/f/956f64e346bae82dee5cbd1326b0d1789100f3.png[/img] [b]p4.[/b] Is it possible to place $13$ integers around a circle so that the sum of any $3$ adjacent numbers is exactly $13$? [b]p5.[/b] Two girls are playing a game. The first player writes the letters $A$ or $B$ in a row, left to right, adding one letter on her turn. The second player switches any two letters after each move by the first player (the letters do not have to be adjacent), or does nothing, which also counts as a move. The game is over when each player has made $2011$ moves. Can the second player plan her moves so that the resulting letters form a palindrome? (A palindrome is a sequence that reads the same forward and backwards, e.g. $AABABAA$.) [u]Round 2[/u] [b]p6.[/b] Eight students participated in a math competition. There were eight problems to solve. Each problem was solved by exactly five people. Show that there are two students who solved all eight problems between them. [b]p7.[/b] There are $3n$ checkers of three different colors: $n$ red, $n$ green and $n$ blue. They were used to randomly fill a board with $3$ rows and $n$ columns so that each square of the board has one checker on it. Prove that it is possible to reshuffle the checkers within each row so that in each column there are checkers of all three colors. Moving checkers to a different row is not allowed. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2010 Dutch IMO TST, 5

Find all triples $(x,y, z)$ of real (but not necessarily positive) numbers satisfying $3(x^2 + y^2 + z^2) = 1$ , $x^2y^2 + y^2z^2 + z^2x^2 = xyz(x + y + z)^3$.

1999 Romania National Olympiad, 4

a) Let $a,b\in R$, $a <b$. Prove that $x \in (a,b)$ if and only if there exists $\lambda \in (0,1)$ such that $x=\lambda a +(1-\lambda)b$. b) If the function $f: R \to R$ has the property: $$f (\lambda x+(1-\lambda) y) < \lambda f(x) + (1-\lambda)f(y), \forall x,y \in R, x\ne y, \forall \lambda \in (0,1), $$ prove that one cannot find four points on the function’s graph that are the vertices of a parallelogram

2023 Baltic Way, 16

Prove that there exist nonconstant polynomials $f, g$ with integer coefficients, such that for infinitely many primes $p$, $p \nmid f(x)-g(y)$ for any integers $x, y$.

III Soros Olympiad 1996 - 97 (Russia), 10.8

Tags: algebra
The distance between cities $A$ and $B$ is $30$ km. Three tourists went from $A$ to $B$. The three of them have two bicycles: a racing bike, on which each of them rides at a speed of $30$ km/h, and a tourist bike, on which they can travel at a speed of $20$ km/h. Each of them can walk at a speed of $6$ km/h. Any bicycle can be left on the road, where it will lie until another tourist can use it. Tourists want to get to $B$ in the shortest time possible, with the end time of the trip corresponding to the moment the last of them arrives at $B$. What is this shortest time?

1985 IMO Longlists, 82

Find all cubic polynomials $x^3 +ax^2 +bx+c$ admitting the rational numbers $a$, $b$ and $c$ as roots.

2019 Azerbaijan Senior NMO, 1

Solve the following equation $$\sqrt{\frac{x^2}3-ax+a^2}+\sqrt{\frac{x^2}3-bx+b^2}=\sqrt{a^2-ab+b^2}$$ where $a;b\in\mathbb{R^+}$

1992 IMO, 2

Let $\,{\mathbb{R}}\,$ denote the set of all real numbers. Find all functions $\,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\,$ such that \[ f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}. \]

2016 SDMO (High School), 3

Let $ u, v, w$ be positive real numbers such that $ u\sqrt {vw} \plus{} v\sqrt {wu} \plus{} w\sqrt {uv} \geq 1$. Find the smallest value of $ u \plus{} v \plus{} w$.

1983 IMO Shortlist, 16

Let $F(n)$ be the set of polynomials $P(x) = a_0+a_1x+\cdots+a_nx^n$, with $a_0, a_1, . . . , a_n \in \mathbb R$ and $0 \leq a_0 = a_n \leq a_1 = a_{n-1 } \leq \cdots \leq a_{[n/2] }= a_{[(n+1)/2]}.$ Prove that if $f \in F(m)$ and $g \in F(n)$, then $fg \in F(m + n).$

1972 Swedish Mathematical Competition, 4

Put $x = \log_{10} 2$, $y = \log_{10} 3$. Then $15 < 16$ implies $1 - x + y < 4x$, so $1 + y < 5x$. Derive similar inequalities from $80 < 81$ and $243 < 250$. Hence show that \[ 0.47 < \log_{10} 3 < 0.482. \]

1986 India National Olympiad, 4

Find the least natural number whose last digit is 7 such that it becomes 5 times larger when this last digit is carried to the beginning of the number.

2006 Federal Competition For Advanced Students, Part 1, 2

Tags: algebra
Show that the sequence $ a_n \equal{} \frac {(n \plus{} 1)^nn^{2 \minus{} n}}{7n^2 \plus{} 1}$ is strictly monotonically increasing, where $ n \equal{} 0,1,2, \dots$.

2022 IFYM, Sozopol, 5

Tags: algebra , divide
Find all functions $f : N \to N$ such that $f(p)$ divides $f(n)^p -n$ by any natural number $n$ and prime number $p$.

1995 IMO Shortlist, 2

Find the maximum value of $ x_{0}$ for which there exists a sequence $ x_{0},x_{1}\cdots ,x_{1995}$ of positive reals with $ x_{0} \equal{} x_{1995}$, such that \[ x_{i \minus{} 1} \plus{} \frac {2}{x_{i \minus{} 1}} \equal{} 2x_{i} \plus{} \frac {1}{x_{i}}, \] for all $ i \equal{} 1,\cdots ,1995$.

2005 Cuba MO, 3

Tags: algebra
Determine all the quadruples of real numbers that satisfy the following: [i]The product of any three of these numbers plus the fourth is constant.[/i]

2004 Germany Team Selection Test, 1

Let n be a positive integer. Find all complex numbers $x_{1}$, $x_{2}$, ..., $x_{n}$ satisfying the following system of equations: $x_{1}+2x_{2}+...+nx_{n}=0$, $x_{1}^{2}+2x_{2}^{2}+...+nx_{n}^{2}=0$, ... $x_{1}^{n}+2x_{2}^{n}+...+nx_{n}^{n}=0$.

2018 Saint Petersburg Mathematical Olympiad, 4

$$(b+c)x^2+(a+c)x+(a+b)=0$$ has not real roots. Prove that $$4ac-b^2 \leq 3a(a+b+c)$$

2017 China Second Round Olympiad, 2

Tags: algebra , sequence
Given a sequence $\{a_n\}$: $a_1=1, a_{n+1}=\left\{ \begin{array}{lcr} a_n+n,\quad a_n\le n, \\ a_n-n,\quad a_n>n, \end{array} \right. \quad n=1,2,\cdots.$ Find the number of positive integers $r$ satisfying $a_r<r\le 3^{2017}$.