This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2017 India PRMO, 15

Integers $1, 2, 3, ... ,n$, where $n > 2$, are written on a board. Two numbers $m, k$ such that $1 < m < n, 1 < k < n$ are removed and the average of the remaining numbers is found to be $17$. What is the maximum sum of the two removed numbers?

2024 Chile National Olympiad., 1

Tags: algebra , function
Let \( f(x) = \frac{100^x}{100^x + 10} \). Determine the value of: \[ f\left( \frac{1}{2024} \right) - f\left( \frac{2}{2024} \right) + f\left( \frac{3}{2024} \right) - f\left( \frac{4}{2024} \right) + \ldots - f\left( \frac{2022}{2024} \right) + f\left( \frac{2023}{2024} \right) \]

Kvant 2020, M2603

For an infinite sequence $a_1, a_2,. . .$ denote as it's [i]first derivative[/i] is the sequence $a'_n= a_{n + 1} - a_n$ (where $n = 1, 2,..$.), and her $k$- th derivative as the first derivative of its $(k-1)$-th derivative ($k = 2, 3,...$). We call a sequence [i]good[/i] if it and all its derivatives consist of positive numbers. Prove that if $a_1, a_2,. . .$ and $b_1, b_2,. . .$ are good sequences, then sequence $a_1\cdot b_1, a_2 \cdot b_2,..$ is also a good one. R. Salimov

2005 Kazakhstan National Olympiad, 1

Solve equation \[2^{\tfrac{1}{2}-2|x|} = \left| {\tan x + \frac{1}{2}} \right| + \left| {\tan x - \frac{1}{2}} \right|\]

PEN G Problems, 25

Show that $\tan \left( \frac{\pi}{m} \right)$ is irrational for all positive integers $m \ge 5$.

MMPC Part II 1996 - 2019, 2006

[b]p1.[/b] Suppose $A$, $B$ and $C$ are the angles of a triangle. Prove that $$1 - 8 \cos A\cos B \cos C = sin^2(B - C) + (cos(B - C) - 2 cosA)^2.$$ [b]p2.[/b] Let $x_1, x_2,..., x_{100}$ be integers whose values are either $0$ or $1$. (a) Show that $$x_1 + x_2 + ... + x_{100} - (x_1x_2 + x_2x_3 + ... + x_{99}x_{100} + x_{100}x_1)\le 50.$$ (b) Give specific values for $x_1, x_2,..., x_{100}$ that give equality. [b]p3.[/b] Let $ABCD$ be a trapezoid whose area is $32$ square meters. Suppose the lengths of the parallel segments $AB$ and $DC$ are $2$ meters and $6$ meters, respectively, and $P$ is the intersection of the diagonals $AC$ and $BD$. If a line through $P$ intersects $AD$ and $BC$ at $E$ and $F$, respectively, determine, with a proof, the minimum possible area for quadrilateral $ABFE$. [b]p4.[/b] Let $n$ be a positive integer and $x$ be a real number. Show that $$\lfloor nx \rfloor = \lfloor x \rfloor +\left\lfloor x + \frac{1}{n} \right\rfloor + \left\lfloor x + \frac{2}{n} \right\rfloor + ... + \left\lfloor x + \frac{n - 1}{n} \right\rfloor$$ where $\lfloor a \rfloor$ is the greatest integer less than or equal to $a$. (For example, $\lfloor 4.5\rfloor = 4$ and $\lfloor - 4.5 \rfloor = -5$.) [b]p5.[/b] A $3n$-digit positive integer (in base $10$) containing no zero is said to be [i]quad-perfect[/i] if the number is a perfect square and each of the three numbers obtained by viewing the first $n$ digits, the middle $n$ digits and the last $n$ digits as three $n$-digit numbers is in itself a perfect square. (For example, when $n = 1$, the only quad-perfect numbers are $144$ and $441$.) Find all $9$-digit quad-perfect numbers. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Belarusian National Olympiad, 8.2

Given quadratic trinomials $P(x)=x^2+ax+b$ and $Q(x)=x^2+cx+d$, where $a>c$. It is known that for every real $t$ and $s$ with $t+s=1$ the polynomial $B(x)=tP(x)+sQ(x)$ has at least one real root. Prove that $bc \geq ad$.

2018 China Team Selection Test, 3

Prove that there exists a constant $C>0$ such that $$H(a_1)+H(a_2)+\cdots+H(a_m)\leq C\sqrt{\sum_{i=1}^{m}i a_i}$$ holds for arbitrary positive integer $m$ and any $m$ positive integer $a_1,a_2,\cdots,a_m$, where $$H(n)=\sum_{k=1}^{n}\frac{1}{k}.$$

2011 India National Olympiad, 3

Let $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0$ and $Q(x)=b_nx^n+b_{n-1}x^{n-1}+\cdots+b_0$ be two polynomials with integral coefficients such that $a_n-b_n$ is a prime and $a_nb_0-a_0b_n\neq 0,$ and $a_{n-1}=b_{n-1}.$ Suppose that there exists a rational number $r$ such that $P(r)=Q(r)=0.$ Prove that $r\in\mathbb Z.$

2002 China Team Selection Test, 1

Tags: algebra
Given a positive integer $ n$, for all positive integers $ a_1, a_2, \cdots, a_n$ that satisfy $ a_1 \equal{} 1$, $ a_{i \plus{} 1} \leq a_i \plus{} 1$, find $ \displaystyle \sum_{i \equal{} 1}^{n} a_1a_2 \cdots a_i$.

2006 China Western Mathematical Olympiad, 4

Assuming that the positive integer $a$ is not a perfect square, prove that for any positive integer n, the sum ${S_{n}=\sum_{i=1}^{n}\{a^{\frac{1}{2}}\}^{i}}$ is irrational.

2010 Malaysia National Olympiad, 9

Tags: algebra
A number of runners competed in a race. When Ammar finished, there were half as many runners who had finished before him compared to the number who finished behind him. Julia was the 10th runner to finish behind Ammar. There were twice as many runners who had finished before Julia compared to the number who finished behind her. How many runners were there in the race?

2017 India PRMO, 5

Let $u, v,w$ be real numbers in geometric progression such that $u > v > w$. Suppose $u^{40} = v^n = w^{60}$. Find the value of $n$.

1989 India National Olympiad, 1

Prove that the Polynomial $ f(x) \equal{} x^{4} \plus{} 26x^{3} \plus{} 56x^{2} \plus{} 78x \plus{} 1989$ can't be expressed as a product $ f(x) \equal{} p(x)q(x)$ , where $ p(x)$ and $ q(x)$ are both polynomial with integral coefficients and with degree at least $ 1$.

2010 Romanian Masters In Mathematics, 4

Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions: (i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers); (ii) $|a_1-b_1|+|a_2-b_2|=2010$; (iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$; (iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$. [i]Massimo Gobbino, Italy[/i]

2000 German National Olympiad, 6

A sequence ($a_n$) satisfies the following conditions: (i) For each $m \in N$ it holds that $a_{2^m} = 1/m$. (ii) For each natural $n \ge 2$ it holds that $a_{2n-1}a_{2n} = a_n$. (iii) For all integers $m,n$ with $2m > n \ge 1$ it holds that $a_{2n}a_{2n+1} = a_{2^m+n}$. Determine $a_{2000}$. You may assume that such a sequence exists.

1998 Italy TST, 1

A real number $\alpha$ is given. Find all functions $f : R^+ \to R^+$ satisfying $\alpha x^2f\left(\frac{1}{x}\right) +f(x) =\frac{x}{x+1}$ for all $x > 0$.

1972 Miklós Schweitzer, 6

Let $ P(z)$ be a polynomial of degree $ n$ with complex coefficients, \[ P(0)\equal{}1, \;\textrm{and}\ \;|P(z)|\leq M\ \;\textrm{for}\ \;|z| \leq 1\ .\] Prove that every root of $ P(z)$ in the closed unit disc has multiplicity at most $ c\sqrt{n}$, where $ c\equal{}c(M) >0$ is a constant depending only on $ M$. [i]G. Halasz[/i]

2009 USA Team Selection Test, 9

Prove that for positive real numbers $x$, $y$, $z$, \[ x^3(y^2+z^2)^2 + y^3(z^2+x^2)^2+z^3(x^2+y^2)^2 \geq xyz\left[xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2\right].\] [i]Zarathustra (Zeb) Brady.[/i]

2017 IFYM, Sozopol, 8

Find all polynomials $P\in \mathbb{R}[x]$, for which $P(P(x))=\lfloor P^2 (x)\rfloor$ is true for $\forall x\in \mathbb{Z}$.

1986 Traian Lălescu, 1.2

Tags: function , algebra
Prove that there exists a surjective function $ f:\mathbb{N}\longrightarrow\mathbb{N} $ having the property that for all natural numbers $ n\ge 2, $ there exists an infinite set $ A_n $ such that $ f(x)=n, $ for all $ x\in A_n. $

2011 Purple Comet Problems, 9

There are integers $m$ and $n$ so that $9 +\sqrt{11}$ is a root of the polynomial $x^2 + mx + n.$ Find $m + n.$

2022 Greece Team Selection Test, 3

Find largest possible constant $M$ such that, for any sequence $a_n$, $n=0,1,2,...$ of real numbers, that satisfies the conditions : i) $a_0=1$, $a_1=3$ ii) $a_0+a_1+...+a_{n-1} \ge 3 a_n - a_{n+1}$ for any integer $n\ge 1$ to be true that $$\frac{a_{n+1}}{a_n} >M$$ for any integer $n\ge 0$.

1994 Taiwan National Olympiad, 6

For $-1\leq x\leq 1$ and $n\in\mathbb N$ define $T_{n}(x)=\frac{1}{2^{n}}[(x+\sqrt{1-x^{2}})^{n}+(x-\sqrt{1-x^{2}})^{n}]$. a)Prove that $T_{n}$ is a monic polynomial of degree $n$ in $x$ and that the maximum value of $|T_{n}(x)|$ is $\frac{1}{2^{n-1}}$. b)Suppose that $p(x)=x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0}\in\mathbb{R}[x]$ is a monic polynomial of degree $n$ such that $p(x)>-\frac{1}{2^{n-1}}$ forall $x$, $-1\leq x\leq 1$. Prove that there exists $x_{0}$, $-1\leq x_{0}\leq 1$ such that $p(x_{0})\geq\frac{1}{2^{n-1}}$.

2003 Gheorghe Vranceanu, 1

Let $ M $ be a set of nonzero real numbers and $ f:M\longrightarrow M $ be a function having the property that the identity function is $ f+f^{-1} . $ [b]1)[/b] Prove that $ m\in M\iff -m\in M. $ [b]2)[/b] Show that $ f $ is odd. [b]3)[/b] Determine the cardinal of $ M. $