This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1986 IMO, 2

Find all functions $f$ defined on the non-negative reals and taking non-negative real values such that: $f(2)=0,f(x)\ne0$ for $0\le x<2$, and $f(xf(y))f(y)=f(x+y)$ for all $x,y$.

1999 Turkey MO (2nd round), 4

Tags: algebra
Find all sequences ${{a}_{1}},{{a}_{2}},...,{{a}_{2000}}$ of real numbers such that $\sum\limits_{n=1}^{2000}{{{a}_{n}}=1999}$ and such that $\frac{1}{2}<{{a}_{n}}<1$ and ${{a}_{n+1}}={{a}_{n}}(2-{{a}_{n}})$ for all $n\ge 1$.

1987 IMO Longlists, 71

To every natural number $k, k \geq 2$, there corresponds a sequence $a_n(k)$ according to the following rule: \[a_0 = k, \qquad a_n = \tau(a_{n-1}) \quad \forall n \geq 1,\] in which $\tau(a)$ is the number of different divisors of $a$. Find all $k$ for which the sequence $a_n(k)$ does not contain the square of an integer.

2023 CIIM, 6

Let $n$ be a positive integer. We define $f(n)$ as the number of finite sequences $(a_1, a_2, \ldots , a_k)$ of positive integers such that $a_1 < a_2 < a_3 < \cdots < a_k$ and $$a_1+a_2^2+a_3^3+\cdots + a_k^k \leq n.$$ Determine the positive constants $\alpha$ and $C$ such that $$\lim\limits_{n\rightarrow \infty} \frac{f(n)}{n^\alpha}=C.$$

PEN A Problems, 1

Show that if $x, y, z$ are positive integers, then $(xy+1)(yz+1)(zx+1)$ is a perfect square if and only if $xy+1$, $yz+1$, $zx+1$ are all perfect squares.

1984 All Soviet Union Mathematical Olympiad, 379

Find integers $m$ and $n$ such that $(5 + 3 \sqrt2)^m = (3 + 5 \sqrt2)^n$.

VII Soros Olympiad 2000 - 01, 10.1

Tags: algebra
Find all values ​​of the parameter $a$ for which the equation $$(a-1)^2x^4 + (a^2-a) x^3 + 3x - 1 = 0$$ has a unique solution and for these $a$ solve the equation.

2022 Brazil Team Selection Test, 2

Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\] true?

IMSC 2024, 6

Let $a\equiv 1\pmod{4}$ be a positive integer. Show that any polynomial $Q\in\mathbb{Z}[X]$ with all positive coefficients such that $$Q(n+1)((a+1)^{Q(n)}-a^{Q(n)})$$ is a perfect square for any $n\in\mathbb{N}^{\ast}$ must be a constant polynomial. [i]Proposed by Vlad Matei, Romania[/i]

2012 Vietnam National Olympiad, 2

Let $\langle a_n\rangle $ and $ \langle b_n\rangle$ be two arithmetic sequences of numbers, and let $m$ be an integer greater than $2.$ Define $P_k(x)=x^2+a_kx+b_k,\ k=1,2,\cdots, m.$ Prove that if the quadratic expressions $P_1(x), P_m(x)$ do not have any real roots, then all the remaining polynomials also don't have real roots.

2009 AMC 10, 6

Kiana has two older twin brothers. The product of their ages is $ 128$. What is the sum of their three ages? $ \textbf{(A)}\ 10\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 16\qquad \textbf{(D)}\ 18\qquad \textbf{(E)}\ 24$

2021 MMATHS, Mixer Round

[b]p1.[/b] Prair takes some set $S$ of positive integers, and for each pair of integers she computes the positive difference between them. Listing down all the numbers she computed, she notices that every integer from $1$ to $10$ is on her list! What is the smallest possible value of $|S|$, the number of elements in her set $S$? [b]p2.[/b] Jake has $2021$ balls that he wants to separate into some number of bags, such that if he wants any number of balls, he can just pick up some bags and take all the balls out of them. What is the least number of bags Jake needs? [b]p3.[/b] Claire has stolen Cat’s scooter once again! She is currently at (0; 0) in the coordinate plane, and wants to ride to $(2, 2)$, but she doesn’t know how to get there. So each second, she rides one unit in the positive $x$ or $y$-direction, each with probability $\frac12$ . If the probability that she makes it to $(2, 2)$ during her ride can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd(a, b) = 1$, then find $a + b$. [b]p4.[/b] Triangle $ABC$ with $AB = BC = 6$ and $\angle ABC = 120^o$ is rotated about $A$, and suppose that the images of points $B$ and $C$ under this rotation are $B'$ and $C'$, respectively. Suppose that $A$, $B'$ and $C$ are collinear in that order. If the area of triangle $B'CC'$ can be expressed as $a - b\sqrt{c}$ for positive integers $a, b, c$ with csquarefree, find $a + b + c$. [b]p5.[/b] Find the sum of all possible values of $a + b + c + d$ if $a, b, c, $d are positive integers satisfying $$ab + cd = 100,$$ $$ac + bd = 500.$$ [b]p6.[/b] Alex lives in Chutes and Ladders land, which is set in the coordinate plane. Each step they take brings them one unit to the right or one unit up. However, there’s a chute-ladder between points $(1, 2)$ and $(2, 0)$ and a chute-ladder between points $(1, 3)$ and $(4, 0)$, whenever Alex visits an endpoint on a chute-ladder, they immediately appear at the other endpoint of that chute-ladder! How many ways are there for Alex to go from $(0, 0)$ to $(4, 4)$? [b]p7.[/b] There are $8$ identical cubes that each belong to $8$ different people. Each person randomly picks a cube. The probability that exactly $3$ people picked their own cube can be written as $\frac{a}{b}$ , where $a$ and $b$ are positive integers with $gcd(a, b) = 1$. Find $a + b$. [b]p8.[/b] Suppose that $p(R) = Rx^2 + 4x$ for all $R$. There exist finitely many integer values of $R$ such that $p(R)$ intersects the graph of $x^3 + 2021x^2 + 2x + 1$ at some point $(j, k)$ for integers $j$ and $k$. Find the sum of all possible values of $R$. [b]p9.[/b] Let $a, b, c$ be the roots of the polynomial $x^3 - 20x^2 + 22$. Find $\frac{bc}{a^2} +\frac{ac}{b^2} +\frac{ab}{c^2}$. [b]p10.[/b] In any finite grid of squares, some shaded and some not, for each unshaded square, record the number of shaded squares horizontally or vertically adjacent to it, this grid’s score is the sum of all numbers recorded this way. Deyuan shades each square in a blank $n \times n$ grid with probability $k$; he notices that the expected value of the score of the resulting grid is equal to $k$, too! Given that $k > 0.9999$, find the minimum possible value of $n$. [b]p11.[/b] Find the sum of all $x$ from $2$ to $1000$ inclusive such that $$\prod^x_{n=2} \log_{n^n}(n + 1)^{n+2}$$ is an integer. [b]p12.[/b] Let triangle $ABC$ with incenter $I$ and circumcircle $\Gamma$ satisfy $AB = 6\sqrt3$, $BC = 14$, and $CA = 22$. Construct points $P$ and $Q$ on rays $BA$ and $CA$ such that $BP = CQ = 14$. Lines $PI$ and $QI$ meet the tangents from $B$ and $C$ to $\Gamma$, respectively, at points $X$ and $Y$ . If $XY$ can be expressed as $a\sqrt{b}-c$ for positive integers $a, b, c$ with $c$ squarefree, find $a + b + c$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1992 IMO Shortlist, 17

Let $ \alpha(n)$ be the number of digits equal to one in the binary representation of a positive integer $ n.$ Prove that: (a) the inequality $ \alpha(n) (n^2 ) \leq \frac{1}{2} \alpha(n)(\alpha(n) + 1)$ holds; (b) the above inequality is an equality for infinitely many positive integers, and (c) there exists a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i }$ goes to zero as $ i$ goes to $ \infty.$ [i]Alternative problem:[/i] Prove that there exists a sequence a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i )}$ (d) $ \infty;$ (e) an arbitrary real number $ \gamma \in (0,1)$; (f) an arbitrary real number $ \gamma \geq 0$; as $ i$ goes to $ \infty.$

2010 Junior Balkan Team Selection Tests - Moldova, 2

Tags: algebra
The positive real numbers $x$ and $y$ satisfy the relation $x + y = 3 \sqrt{xy}$. Find the value of the numerical expression $$E=\left| \frac{x-y}{x+y}+\frac{x^2-y^2}{x^2+y^2}+\frac{x^3-y^3}{x^3+y^3}\right|.$$

1998 Brazil Team Selection Test, Problem 4

(a) Show that, for each positive integer $n$, the number of monic polynomials of degree $n$ with integer coefficients having all its roots on the unit circle is finite. (b) Let $P(x)$ be a monic polynomial with integer coefficients having all its roots on the unit circle. Show that there exists a positive integer $m$ such that $y^m=1$ for each root $y$ of $P(x)$.

2000 Putnam, 6

Let $f(x)$ be a polynomial with integer coefficients. Define a sequence $a_0, a_1, \cdots $ of integers such that $a_0=0$ and $a_{n+1}=f(a_n)$ for all $n \ge 0$. Prove that if there exists a positive integer $m$ for which $a_m=0$ then either $a_1=0$ or $a_2=0$.

1989 Bundeswettbewerb Mathematik, 2

Find all pairs $(a,b)$ of real numbers such that $$|\sqrt{1-x^2 }-ax-b| \leq \frac{\sqrt{2} -1}{2}$$ holds for all $x\in [0,1]$.

2010 Math Prize For Girls Problems, 16

Let $P$ be the quadratic function such that $P(0) = 7$, $P(1) = 10$, and $P(2) = 25$. If $a$, $b$, and $c$ are integers such that every positive number $x$ less than 1 satisfies \[ \sum_{n = 0}^\infty P(n) x^n = \frac{ax^2 + bx + c}{{(1 - x)}^3}, \] compute the ordered triple $(a, b, c)$.

2017 Indonesia MO, 4

Tags: algebra
Determine all pairs of [i]distinct[/i] real numbers $(x, y)$ such that both of the following are true: [list] [*]$x^{100} - y^{100} = 2^{99} (x-y)$ [*]$x^{200} - y^{200} = 2^{199} (x-y)$ [/list]

2023 Durer Math Competition (First Round), 3

In a Greek village of $100$ inhabitants in the beginning there lived $12$ Olympians and $88$ humans, they were the first generation. The Olympians are $100\%$ gods while humans are $0\%$ gods. In each generation they formed $50$ couples and each couple had $2$ children, who form the next generation (also consisting of $100$ members). From the second generation onwards, every person’s percentage of godness is the average of the percentages of his/her parents’ percentages. (For example the children of $25\%$ and $12.5\% $gods are $18.75\%$ gods.) a) Which is the earliest generation in which it is possible that there are equally many $100\%$ gods as $ 0\%$ gods? b) At most how many members of the fifth generation are at least 25% gods?

2000 Romania National Olympiad, 3

A function $ f:\mathbb{R}^2\longrightarrow\mathbb{R} $ is [i]olympic[/i] if, any finite number of pairwise distinct elements of $ \mathbb{R}^2 $ at which the function takes the same value represent in the plane the vertices of a convex polygon. Prove that if $ p $ if a complex polynom of degree at least $ 1, $ then the function $ \mathbb{R}^2\ni (x,y)\mapsto |p(x+iy)| $ is olympic if and only if the roots of $ p $ are all equal.

2004 India IMO Training Camp, 3

Determine all functionf $f : \mathbb{R} \mapsto \mathbb{R}$ such that \[ f(x+y) = f(x)f(y) - c \sin{x} \sin{y} \] for all reals $x,y$ where $c> 1$ is a given constant.

2004 Regional Competition For Advanced Students, 2

Tags: algebra
Solve the following equation for real numbers: $ \sqrt{4\minus{}x\sqrt{4\minus{}(x\minus{}2)\sqrt{1\plus{}(x\minus{}5)(x\minus{}7)}}}\equal{}\frac{5x\minus{}6\minus{}x^2}{2}$ (all square roots are non negative)

2006 MOP Homework, 5

Tags: algebra
Let $\{a_n\}^{\inf}_{n=1}$ and $\{b_n\}^{\inf}_{n=1}$ be two sequences of real numbers such that $a_{n+1}=2b_n-a_n$ and $b_{n+1}=2a_n-b_n$ for every positive integer $n$. Prove that $a_n>0$ for all $n$, then $a_1=b_1$.

2009 Junior Balkan Team Selection Tests - Moldova, 2

Real positive numbers $a, b, c$ satisfy $abc=1$. Prove the inequality $$\frac{a^2+b^2}{a^4+b^4}+\frac{b^2+c^2}{b^4+c^4}+\frac{c^2+a^2}{c^4+a^4}\leq a+b+c.$$