Found problems: 15925
1998 Tournament Of Towns, 1
Prove that \[\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\geq \frac{a+b+c}{3}\]
for positive reals $a,b,c$
(S Tokarev)
1988 IMO Longlists, 62
Let $x = p, y = q, z = r, w = s$ be the unique solution of the system of linear equations \[ x + a_i \cdot y + a^2_i \cdot z + a^3_i \cdot w = a^4_i, i = 1,2,3,4. \] Express the solutions of the following system in terms of $p,q,r$ and $s:$ \[ x + a^2_i \cdot y + a^4_i \cdot z + a^6_i \cdot w = a^8_i, i = 1,2,3,4. \] Assume the uniquness of the solution.
2022 China Team Selection Test, 3
Given a positive integer $n \ge 2$. Find all $n$-tuples of positive integers $(a_1,a_2,\ldots,a_n)$, such that $1<a_1 \le a_2 \le a_3 \le \cdots \le a_n$, $a_1$ is odd, and
(1) $M=\frac{1}{2^n}(a_1-1)a_2 a_3 \cdots a_n$ is a positive integer;
(2) One can pick $n$-tuples of integers $(k_{i,1},k_{i,2},\ldots,k_{i,n})$ for $i=1,2,\ldots,M$ such that for any $1 \le i_1 <i_2 \le M$, there exists $j \in \{1,2,\ldots,n\}$ such that $k_{i_1,j}-k_{i_2,j} \not\equiv 0, \pm 1 \pmod{a_j}$.
2009 Puerto Rico Team Selection Test, 4
Find all integers $ b$ and $ c$ such that the equation $ x^2 - bx + c = 0$ has two real roots $ x_1, x_2$ satisfying $ x_1^2 + x_2^2 = 5$.
2008 Grigore Moisil Intercounty, 1
Find all monotonic functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ with the property that
$$ (f(\sin x))^2-3f(x)=-2, $$
for any real numbers $ x. $
[i]Dorin Andrica[/i] and [i]Mihai Piticari[/i]
2023 Lusophon Mathematical Olympiad, 6
A calculator has two operations $A$ and $B$ and initially shows the number $1$. Operation $A$ turns $x$ into $x+1$ and operation B turns $x$ into $\dfrac{x}{x+1}$.
a) Show all the ways we can get the number $\dfrac{20}{23}$.
b) For every rational $r \neq 1$, determine if it is possible to get $r$ using only operations $A$ and $B$.
2012 Math Hour Olympiad, 8-10
[u]Round 1 [/u]
[b]p1.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests.
One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor.
Now Pooh can tell how many knights are at the table. Can you?
[b]p2.[/b] Harry has an $8 \times 8$ board filled with the numbers $1$ and $-1$, and the sum of all $64$ numbers is $0$. A magical cut of this board is a way of cutting it into two pieces so that the sum of the numbers in each piece is also $0$. The pieces should not have any holes. Prove that Harry will always be able to find a magical cut of his board. (The picture shows an example of a proper cut.)
[img]https://cdn.artofproblemsolving.com/attachments/4/b/98dec239cfc757e6f2996eef7876cbfd79d202.png[/img]
[b]p3.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$.
[b]p4.[/b] $120$ bands are participating in this year's Northwest Grunge Rock Festival, and they have $119$ fans in total. Each fan belongs to exactly one fan club. A fan club is called crowded if it has at least $15$ members.
Every morning, all the members of one of the crowded fan clubs start arguing over who loves their favorite band the most. As a result of the fighting, each of them leaves the club to join another club, but no two of them join the same one.
Is it true that, no matter how the clubs are originally arranged, all these arguments will eventually stop?
[b]p5.[/b] In Infinite City, the streets form a grid of squares extending infinitely in all directions. Bonnie and Clyde have just robbed the Infinite City Bank, located at the busiest intersection downtown. Bonnie sets off heading north on her bike, and, $30$ seconds later, Clyde bikes after her in the same direction. They each bike at a constant speed of $1$ block per minute. In order to throw off any authorities, each of them must turn either left or right at every intersection. If they continue biking in this manner, will they ever be able to meet?
[u]Round 2 [/u]
[b]p6.[/b] In a certain herd of $33$ cows, each cow weighs a whole number of pounds. Farmer Dan notices that if he removes any one of the cows from the herd, it is possible to split the remaining $32$ cows into two groups of equal total weight, $16$ cows in each group. Show that all $33$ cows must have the same weight.
[b]p7.[/b] Katniss is thinking of a positive integer less than $100$: call it $x$. Peeta is allowed to pick any two positive integers $N$ and $M$, both less than $100$, and Katniss will give him the greatest common divisor of $x+M$ and $N$ . Peeta can do this up to seven times, after which he must name Katniss' number $x$, or he will die. Can Peeta ensure his survival?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Iran Team Selection Test, 3
Find all two-variable polynomials $p(x,y)$ such that for each $a,b,c\in\mathbb R$:
\[p(ab,c^2+1)+p(bc,a^2+1)+p(ca,b^2+1)=0\]
2015 Junior Balkan Team Selection Tests - Moldova, 1
Ler $a$ be the number $123456789$. Compare the numbers
$$2014^{9^{9^a}}, 2015^{a^{a^9}}$$
2021 Malaysia IMONST 1, 8
A tree grows in the following manner. On the first day, one branch grows out of the ground. On the second day, a leaf grows on the branch and the branch tip splits up into two new branches. On each subsequent day, a new leaf grows on every existing branch, and each branch tip splits up into two new branches. How many leaves does the tree have at the end of the tenth day?
2014 HMNT, 7
Consider the set of $5$-tuples of positive integers at most $5$. We say the tuple ($a_1$, $a_2$, $a_3$, $a_4$, $a_5$) is [i]perfect[/i] if for any distinct indices $i$, $j$, $k$, the three numbers $a_i$, $a_j$ , $a_k$ do not form an arithmetic progression (in any order). Find the number of perfect $5$-tuples.
2008 Princeton University Math Competition, 1
Calculate $$\sqrt{6 + \sqrt{6 + \sqrt{6 +... }}}+\frac{6}{1+ \frac{6}{1+...}}$$
2019 Azerbaijan Senior NMO, 5
Prove that for any $a;b;c\in\mathbb{R^+}$, we have $$(a+b)^2+(a+b+4c)^2\geq \frac{100abc}{a+b+c}$$ When does the equality hold?
2001 China Team Selection Test, 1
For a given natural number $n > 3$, the real numbers $x_1, x_2, \ldots, x_n, x_{n + 1}, x_{n + 2}$ satisfy the conditions $0
< x_1 < x_2 < \cdots < x_n < x_{n + 1} < x_{n + 2}$. Find the minimum possible value of
\[\frac{(\sum _{i=1}^n \frac{x_{i + 1}}{x_i})(\sum _{j=1}^n \frac{x_{j + 2}}{x_{j +
1}})}{(\sum _{k=1}^n \frac{x_{k + 1} x_{k + 2}}{x_{k + 1}^2 + x_k
x_{k + 2}})(\sum _{l=1}^n \frac{x_{l + 1}^2 + x_l x_{l + 2}}{x_l
x_{l + 1}})}\] and find all $(n + 2)$-tuplets of real numbers $(x_1, x_2, \ldots, x_n, x_{n + 1}, x_{n + 2})$ which gives this value.
1975 All Soviet Union Mathematical Olympiad, 212
Prove that for all the positive numbers $a,b,c$ the following inequality is valid:
$$a^3+b^3+c^3+3abc>ab(a+b)+bc(b+c)+ac(a+c)$$
2014 HMNT, 2
Let $f(x) = x^2 + 6x + 7$. Determine the smallest possible value of $f(f(f(f(x))))$ over all real numbers $x.$
1992 AMC 12/AHSME, 28
Let $i = \sqrt{-1}$. The product of the real parts of the roots of $z^2 - z = 5 - 5i$ is
$ \textbf{(A)}\ -25\qquad\textbf{(B)}\ -6\qquad\textbf{(C)}\ -5\qquad\textbf{(D)}\ \frac{1}{4}\qquad\textbf{(E)}\ 25 $
2005 Thailand Mathematical Olympiad, 19
Let $P(x)$ be a monic polynomial of degree $4$ such that for $k = 1, 2, 3$, the remainder when $P(x)$ is divided by $x - k$ is equal to $k$. Find the value of $P(4) + P(0)$.
2005 MOP Homework, 3
Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that
(a) $f(1)=1$
(b) $f(n+2)+(n^2+4n+3)f(n)=(2n+5)f(n+1)$ for all $n \in \mathbb{N}$.
(c) $f(n)$ divides $f(m)$ if $m>n$.
2019 BMT Spring, 1
Let $p$ be a polynomial with degree less than $4$ such that $p(x)$ attains a maximum at $x = 1$. If $p(1) = p(2) = 5$, find $p(10)$.
2017 Romania Team Selection Test, P2
Find the smallest constant $C > 0$ for which the following statement holds: among any five positive real numbers $a_1,a_2,a_3,a_4,a_5$ (not necessarily distinct), one can always choose distinct subscripts $i,j,k,l$ such that
\[ \left| \frac{a_i}{a_j} - \frac {a_k}{a_l} \right| \le C. \]
2016 USA Team Selection Test, 2
Let $n \ge 4$ be an integer. Find all functions $W : \{1, \dots, n\}^2 \to \mathbb R$ such that for every partition $[n] = A \cup B \cup C$ into disjoint sets, \[ \sum_{a \in A} \sum_{b \in B} \sum_{c \in C} W(a,b) W(b,c) = |A| |B| |C|. \]
2011 China Second Round Olympiad, 10
A sequence $a_n$ satisfies $a_1 =2t-3$ ($t \ne 1,-1$), and $a_{n+1}=\dfrac{(2t^{n+1}-3)a_n+2(t-1)t^n-1}{a_n+2t^n-1}$.
[list]
[b][i]i)[/i][/b] Find $a_n$,
[b][i]ii)[/i][/b] If $t>0$, compare $a_{n+1}$ with $a_n$.[/list]
2009 Belarus Team Selection Test, 1
On R a binary algebraic operation ''*'' is defined which satisfies the following two conditions:
i) for all $a,b \in R$, there exists a unique $x \in R$ such that $x *a=b$ (write $x=b/a$)
ii) $(a*b)*c= (a*c)* (b*c)$ for all $a,b,c \in R$
a) Is this operation necesarily commutative (i.e. $a*b=b*a$ for all $a,b \in R$) ?
b) Prove that $(a/b)/c = (a/c) / (b/c)$ and $(a/b)*c = (a*c) / (b*c)$ for all $a,b,c \in R$.
A. Mirotin
2003 Italy TST, 3
Determine all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ that satisfy
\[f(f(x)+y)=2x+f(f(y)-x)\quad\text{for all real}\ x,y. \]