Found problems: 15925
2019 PUMaC Algebra A, 1
Let $x$ and $y$ be positive real numbers that satisfy $(\log x)^2+(\log y)^2=\log(x^2)+\log(y^2)$. Compute the maximum possible value of $(\log(xy))^2$.
2005 Cuba MO, 6
All positive differences $a_i -a_j$ of five different positive integers $a_1$, $a_2$, $a_3$, $a_4$ and $a_5$ are all different. Let $A$ be the set formed by the largest elements of each group of $5$ elements that meet said condition. Determine the minimum element of $A$.
2024 JHMT HS, 12
Let $\{ a_n \}_{n=0}^{\infty}$, $\{ b_n \}_{n=0}^{\infty}$, and $\{ c_n \}_{n=0}^{\infty}$ be sequences of real numbers such that for all $k\geq 1$,
\begin{align*}
a_k&=\left\lfloor \sqrt{2}+\frac{k-1}{2024} \right\rfloor+a_{k-1} \\
b_k+c_k&=1 \\
a_{k-1}b_k&=a_kc_k.
\end{align*}
Suppose that $a_0=1$, $b_0=2$, and $c_0=3$. Given that $\sqrt2\approx1.4142$, compute
\[ \sum_{k=1}^{2024}(a_kb_k-a_{k-1}c_k). \]
2022 Belarusian National Olympiad, 11.8
A polynomial $P(x,y)$ with integer coefficients satisfies two following conditions:
1. for every integer $a$ there exists exactly one integer $y$, such that $P(a,y)=0$
2. for every integer $b$ there exists exactly one integer $x$, such that $P(x,b)=0$
a) Prove that if the degree of $P$ is $2$, then it is divisible by either $x-y+C$ for some integer $C$, or $x+y+C$ for some integer $C$
b) Is there a polynomial $P$ that isn't divisible by any of $x-y+C$ or $x+y+C$ for integers $C$?
1977 Germany Team Selection Test, 1
We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$
1977 IMO Longlists, 23
For which positive integers $n$ do there exist two polynomials $f$ and $g$ with integer coefficients of $n$ variables $x_1, x_2, \ldots , x_n$ such that the following equality is satisfied:
\[\sum_{i=1}^n x_i f(x_1, x_2, \ldots , x_n) = g(x_1^2, x_2^2, \ldots , x_n^2) \ ? \]
2006 Tuymaada Olympiad, 4
Find all functions $f: (0,\infty)\rightarrow(0,\infty)$ with the following properties: $f(x+1)=f(x)+1$ and $f\left(\frac{1}{f(x)}\right)=\frac{1}{x}$.
[i]Proposed by P. Volkmann[/i]
2018 Auckland Mathematical Olympiad, 2
Starting with a list of three numbers, the “[i]Make-My-Day[/i]” procedure creates a new list by replacing each number by the sum of the other two. For example, from $\{1, 3, 8\}$ “[i]Make-My-Day[/i]” gives $\{11, 9, 4\}$ and a new “[i]MakeMy-Day[/i]” leads to $\{13, 15, 20\}$. If we begin with $\{20, 1, 8\}$, what is the maximum difference between two numbers on the list after $2018$ consecutive “[i]Make-My-Day[/i]”s?
1993 AMC 12/AHSME, 20
Consider the equation $10z^2-3iz-k=0$, where $z$ is a complex variable and $i^2=-1$. Which of the following statements is true?
$ \textbf{(A)}\ \text{For all positive real numbers}\ k,\ \text{both roots are pure imaginary.} \\ \qquad\textbf{(B)}\ \text{For all negative real numbers}\ k,\ \text{both roots are pure imaginary.} \\ \qquad\textbf{(C)}\ \text{For all pure imaginary numbers}\ k,\ \text{both roots are real and rational.} \\ \qquad\textbf{(D)}\ \text{For all pure imaginary numbers}\ k,\ \text{both roots are real and irrational.} \\ \qquad\textbf{(E)}\ \text{For all complex numbers}\ k,\ \text{neither root is real.} $
2005 iTest, 2
Find the sum of the solutions of $x^3 + x + 182 = 0$.
2018 239 Open Mathematical Olympiad, 8-9.7
The sequence $a_n$ is defined by the following conditions: $a_1=1$, and for any $n\in \mathbb N$, the number $a_{n+1}$ is obtained from $a_n$ by adding three if $n$ is a member of this sequence, and two if it is not. Prove that $a_n<(1+\sqrt 2)n$ for all $n$.
[i]Proposed by Mikhail Ivanov[/i]
2011 District Olympiad, 3
Let be two complex numbers $ a,b. $ Show that the following affirmations are equivalent:
$ \text{(i)} $ there are four numbers $ x_1,x_2,x_3,x_4\in\mathbb{C} $ such that $ \big| x_1 \big| =\big| x_3 \big|, \big| x_2 \big| =\big| x_4 \big|, $ and
$$ x_{j_1}^2-ax_{j_1}+b=0=x_{j_2}^2-bx_{j_2}+a,\quad\forall j_1\in\{ 1,2\} ,\quad\forall j_2\in\{ 3,4\} . $$
$ \text{(ii)} a^3=b^3 $ or $ b=\overline{a} $ (the conjugate of a).
EMCC Accuracy Rounds, 2017
[b]p1.[/b] Chris goes to Matt's Hamburger Shop to buy a hamburger. Each hamburger must contain exactly one bread, one lettuce, one cheese, one protein, and at least one condiment. There are two kinds of bread, two kinds of lettuce, three kinds of cheese, three kinds of protein, and six different condiments: ketchup, mayo, mustard, dill pickles, jalape~nos, and Matt's Magical Sunshine Sauce. How many different hamburgers can Chris make?
[b]p2.[/b] The degree measures of the interior angles in convex pentagon $NICKY$ are all integers and form an increasing arithmetic sequence in some order. What is the smallest possible degree measure of the pentagon's smallest angle?
[b]p3.[/b] Daniel thinks of a two-digit positive integer $x$. He swaps its two digits and gets a number $y$ that is less than $x$. If $5$ divides $x-y$ and $7$ divides $x+y$, find all possible two-digit numbers Daniel could have in mind.
[b]p4.[/b] At the Lio Orympics, a target in archery consists of ten concentric circles. The radii of the circles are $1$, $2$, $3$, $...$, $9$, and $10$ respectively. Hitting the innermost circle scores the archer $10$ points, the next ring is worth $9$ points, the next ring is worth 8 points, all the way to the outermost ring, which is worth $1$ point. If a beginner archer has an equal probability of hitting any point on the target and never misses the target, what is the probability that his total score after making two shots is even?
[b]p5.[/b] Let $F(x) = x^2 + 2x - 35$ and $G(x) = x^2 + 10x + 14$. Find all distinct real roots of $F(G(x)) = 0$.
[b]p6.[/b] One day while driving, Ivan noticed a curious property on his car's digital clock. The sum of the digits of the current hour equaled the sum of the digits of the current minute. (Ivan's car clock shows $24$-hour time; that is, the hour ranges from $0$ to $23$, and the minute ranges from $0$ to $59$.) For how many possible times of the day could Ivan have observed this property?
[b]p7.[/b] Qi Qi has a set $Q$ of all lattice points in the coordinate plane whose $x$- and $y$-coordinates are between $1$ and $7$ inclusive. She wishes to color $7$ points of the set blue and the rest white so that each row or column contains exactly $1$ blue point and no blue point lies on or below the line $x + y = 5$. In how many ways can she color the points?
[b]p8.[/b] A piece of paper is in the shape of an equilateral triangle $ABC$ with side length $12$. Points $A_B$ and $B_A$ lie on segment $AB$, such that $AA_B = 3$, and $BB_A = 3$. Define points $B_C$ and $C_B$ on segment $BC$ and points $C_A$ and $A_C$ on segment $CA$ similarly. Point $A_1$ is the intersection of $A_CB_C$ and $A_BC_B$. Define $B_1$ and $C_1$ similarly. The three rhombi - $AA_BA_1A_C$,$BB_CB_1B_A$, $CC_AC_1C_B$ - are cut from triangle $ABC$, and the paper is folded along segments $A_1B_1$, $B_1C_1$, $C_1A_1$, to form a tray without a top. What is the volume of this tray?
[b]p9.[/b] Define $\{x\}$ as the fractional part of $x$. Let $S$ be the set of points $(x, y)$ in the Cartesian coordinate plane such that $x + \{x\} \le y$, $x \ge 0$, and $y \le 100$. Find the area of $S$.
[b]p10.[/b] Nicky likes dolls. He has $10$ toy chairs in a row, and he wants to put some indistinguishable dolls on some of these chairs. (A chair can hold only one doll.) He doesn't want his dolls to get lonely, so he wants each doll sitting on a chair to be adjacent to at least one other doll. How many ways are there for him to put any number (possibly none) of dolls on the chairs? Two ways are considered distinct if and only if there is a chair that has a doll in one way but does not have one in the other.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1996 Swedish Mathematical Competition, 3
For every positive integer $n$, we define the function $p_n$ for $x\ge 1$ by
$$p_n(x) = \frac12 \left(\left(x+\sqrt{x^2-1}\right)^n+\left(x-\sqrt{x^2-1}\right)^n\right).$$
Prove that $p_n(x) \ge 1$ and that $p_{mn}(x) = p_m(p_n(x))$.
1998 ITAMO, 1
Calculate the sum $\sum_{n=1}^{1.000.000}[ \sqrt{n} ]$ .
You may use the formula $\sum_{i=1}^{k} i^2=\frac{k(k +1)(2k +1)}{6}$ without a proof.
Taiwan TST 2015 Round 1, 2
Given a positive integer $n \geq 3$. Find all $f:\mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that for any $n$ positive reals $a_1,...,a_n$, the following condition is always satisfied:
$\sum_{i=1}^{n}(a_i-a_{i+1})f(a_i+a_{i+1}) = 0$
where $a_{n+1} = a_1$.
2013 Hanoi Open Mathematics Competitions, 15
Denote by $Q$ and $N^*$ the set of all rational and positive integer numbers, respectively.
Suppose that $\frac{ax + b}{x} \in Q$ for every $x \in N^*$:
Prove that there exist integers $A,B,C$ such that $\frac{ax + b}{x}= \frac{Ax + B}{Cx}$ for all $x \in N^* $
1997 IMO Shortlist, 10
Find all positive integers $ k$ for which the following statement is true: If $ F(x)$ is a polynomial with integer coefficients satisfying the condition $ 0 \leq F(c) \leq k$ for each $ c\in \{0,1,\ldots,k \plus{} 1\}$, then $ F(0) \equal{} F(1) \equal{} \ldots \equal{} F(k \plus{} 1)$.
1967 Spain Mathematical Olympiad, 1
It is known that the real function $f(t)$ is monotonic increasing in the interval $-8 \le t \le 8$, but nothing is known about what happens outside of it. In what range of values of $x$, can it be ensured that the function $y = f(2x - x^2)$ is monotonic increasing?
2015 NIMO Summer Contest, 4
Let $P$ be a function defined by $P(t)=a^t+b^t$, where $a$ and $b$ are complex numbers. If $P(1)=7$ and $P(3)=28$, compute $P(2)$.
[i] Proposed by Justin Stevens [/i]
Mid-Michigan MO, Grades 7-9, 2006
[b]p1.[/b] Find all solutions $a, b, c, d, e, f$ if it is known that they represent distinct digits and satisfy the following:
$\begin{tabular}{ccccc}
& a & b & c & a \\
+ & & d & d & e \\
& & & d & e \\
\hline
d & f & f & d & d \\
\end{tabular}$
[b]p2.[/b] Explain whether it possible that the sum of two squares of positive whole numbers has all digits equal to $1$:
$$n^2 + m^2 = 111...111$$
[b]p3. [/b]Two players play the following game on an $8 \times 8$ chessboard. The first player can put a rook on an arbitrary square. Then the second player can put another rook on a free square that is not controlled by the first rook. Then the first player can put a new rook on a free square that is not controlled by the rooks on the board. Then the second player can do the same, etc. A player who cannot put a new rook on the board loses the game. Who has a winning strategy?
[b]p4.[/b] Show that the difference $9^{2008} - 7^{2008}$ is divisible by $10$.
[b]p5.[/b] Is it possible to find distict positive whole numbers $a, b, c, d, e$ such that
$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}= 1?$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Greece Team Selection Test, 1
Solve in positive reals the system:
$x+y+z+w=4$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}=5-\frac{1}{xyzw}$
2021 Peru EGMO TST, 7
Let $x_0,x_1,\dots, x_{n-1}$ be real numbers such that $0<|x_0|<|x_1|<\dots<|x_{n-1}|$. We will write the sum of the elements of each one of the $2^n$ subsets of $\{x_0,x_1,\dots,x_{n-1}\}$ in a paper. Prove that the $2^n$ written numbers are consecutive elements of a arithmetic progression if and only if the ratios
$$|\frac{x_i}{x_j}|, 0\leq j<i\leq n-1$$
are equal(s) to the ratio(s) obtained with the numbers $2^0,2^1,\dots,2^{n-1}$.
Note: The sum of the elements of the empty set is $0$.
1956 Moscow Mathematical Olympiad, 342
Given three numbers $x, y, z$ denote the absolute values of the differences of each pair by $x_1,y_1, z_1$. From $x_1, y_1, z_1$ form in the same fashion the numbers $x_2, y_2, z_2$, etc. It is known that $x_n = x,y_n = y, z_n = z$ for some $n$. Find $y$ and $z$ if $x = 1$.
2008 Harvard-MIT Mathematics Tournament, 7
A [i]root of unity[/i] is a complex number that is a solution to $ z^n \equal{} 1$ for some positive integer $ n$. Determine the number of roots of unity that are also roots of $ z^2 \plus{} az \plus{} b \equal{} 0$ for some integers $ a$ and $ b$.